

D.C. Wyld, et al. (Eds): CCSEA 2011, CS & IT 02, pp. 232–240, 2011.

© CS & IT-CSCP 2011 DOI: 10.5121/csit.2011.1222

DEPENDABLE PRIVACY REQUIREMENTS BY AGILE

MODELED LAYERED SECURITY ARCHITECTURES –

WEB SERVICES CASE STUDY

M.Upendra Kumar
1

 Dr.D.Sravan Kumar
2

Dr.B.Padmaja Rani
3
 K.Venkateswar

Rao
4

A.V.Krishna Prasad
5

1
Research Scholar CSE JNTU Hyderabad A.P. India

uppi_shravani@rediffmail.com
2
Principal and Professor CSE KITE WCPES Hyderabad A.P. India

dasojusravan@yahoo.co.in
3
Professor CSE JNTU CEH Hyderabad A.P. India

padmaja_jntuh@yahoo.co.in
3
Associate Professor CSE JNTU CEH Hyderabad A.P. India

kvenkateswarrao_jntuh@yahoo.co.in

5
Research Scholar S.V.University Tirupathi A.P. India

kpvambati@gmail.com

ABSTRACT

Software Engineering covers the definition of processes, techniques and models suitable for its

environment to guarantee quality of results. An important design artifact in any software

development project is the Software Architecture. Software Architecture’s important part is the

set of architectural design rules. A primary goal of the architecture is to capture the

architecture design decisions. An important part of these design decisions consists of

architectural design rules In an MDA (Model-Driven Architecture) context, the design of the

system architecture is captured in the models of the system. MDA is known to be layered

approach for modeling the architectural design rules and uses design patterns to improve the

quality of software system. And to include the security to the software system, security patterns

are introduced that offer security at the architectural level. More over, agile software

development methods are used to build secure systems. There are different methods defined in

agile development as extreme programming (XP), scrum, feature driven development (FDD),

test driven development (TDD), etc. Agile processing is includes the phases as agile analysis,

agile design and agile testing. These phases are defined in layers of MDA to provide security at

the modeling level which ensures that security at the system architecture stage will improve the

requirements for that system. Agile modeled Layered Security Architectures increase the

dependability of the architecture in terms of privacy requirements. We validate this with a case

study of dependability of privacy of Web Services Security Architectures, which helps for secure

service oriented security architecture. In this paper the major part is given to model

architectural design rules using MDA so that architects and developers are responsible to

automatic enforcement on the detailed design and easy to understand and use by both of them.

This MDA approach is implemented in use of Agile strategy in three different phases covering

three different layers to provide security to the system. With this procedure a premise

conclusion has been given that with the system security the requirements for that system are

improved. This paper summarizes that security is essential for every system at initial stage and

upon introduction of security at middle stage must lead to the change in the system i.e., an

improvement to system requirements.

Keywords
Security Architecture, Agile Modeling, Dependability, Privacy requirements, Web Services

Computer Science & Information Technology (CS & IT) 233

1. INTRODUCTION TO AGILE MODELED LAYERED SECURITY

ARCHITECTURES AND LITERATURE SURVEY

Software Engineering covers the definition of processes, techniques and models suitable for its

environment to guarantee quality of results. For Software Architecture the requirements gathering

and analysis is done using MDA (Model-Driven Architecture) which is a layered architecture. To

provide security to the architecture various security techniques are used as agile methodologies.

This states that Secure Software Architecture will improve the Requirements.

Software Architecture: An important design artifact in any software development project, with the

possible exception of very small projects, is the Software Architecture. An important part of any

architecture is the set of Architectural Design Rules. Architectural Design Rules are defined as

the rules, specified by the architect(s) that need to be followed in the detailed design of the

system. A primary role of the architecture is to capture the architectural design decisions. An

important part of these design decisions consists of architectural design rules [1].

Security: Security ensures that information is provided only to those users who are authorized to

possess the information. Security generally includes the following:

Identification: This assumes that system must check whether a user really is whom he or she

claims to be. There are many techniques for identification and it is also called as authentication.

The most widely used is “Username/Password” approach. More sophisticated techniques based

on biometrical data are like retinal fingerprint scan.

Authorization: This means that the system should provide only the information that the user is

authorized for, and prevent access to any other information. Authorization usually assumes

defining “user access rights”, which are settings that define to which operations, data, or features

of the system the user, does have access.

Encryption: This transforms information so that unauthorized users (who intentionally or

accidentally come into its possession) cannot recognize it [11].

MDA: Model-Driven Development (MDD) is a modeling approach. The basic premise of Model-

Driven Development is to capture all important design information in a set of formal or

semiformal models, which are kept consistent automatically. To realize full benefits of MDD,

formalize architecture design rules, which then allow automatic enforcement of architecture on

the system model. There exist several approaches to MDD, such as OMG’s (Object Management

Group) MDA (Model-Driven Architecture), Domain Specific Modeling (DSM), and Software

factories fro Microsoft. Model-Driven Architecture prescribes that three models or sets of models

shall be developed as:

The Computationally Independent Model(s) (CIM) captures the requirements of the system.

The Platform-Independent Model(s) (PIM) captures the systems functionality without considering

any particular execution platform.

The Platform-Specific Model(s) (PSM) combines the specifications in the PIM with the details

that specify how the system uses a particular type of platform. The PSM is a transformation of the

PIM using a mapping either on the type level or at the instance level.

MDA does not directly address architectural design or how to represent the architecture, but the

architecture has to be captured in the PIM or in the mapping since the CIM captures the

requirements and the PSM is generated from the PIM using the mapping [1].

Agile Methods: Over the past few years, a new family of software engineering methods has

started to gain acceptance amongst the software development community. These methods,

collectively called Agile Methods, conform to the Agile Manifesto, which states “We are

uncovering better ways of developing software by doing it and helping others does it. Through

234 Computer Science & Information Technology (CS & IT)

this work we have come to value: Individuals and interactions over processes and tools working

software over comprehensive documentation customer collaboration over contract negotiation

responding to change over following a plan That is, while there is value in the items on the right,

we value the items on the left more.” The individual agile methods include Extreme Programming

(XP), Scrum, Lean Software Development, Crystal Methodologies, Feature Driven Development

(FDD), and Dynamic Systems Development Methodology (DSDM). While there are many

differences between these methodologies, they are based on some common principles, such as

short development iterations, minimal design upfront, emergent design and architecture,

collective code ownership and ability for anyone to change any part of the code, direct

communication and minimal or no documentation (the code is the documentation), and gradual

building of test cases. Some of these practices are in direct conflict with secure SDLC processes

[2].

2. DESIGNING DEPENDABLE PRIVACY REQUIREMENTS USING AGILE MODELD

LAYERED SOLUTIONS

Security Requirements: Agile information systems and software methods are characterized by

nimbleness to rapid changes, multiple incremental iterations and a fast development pace. Agile

development is defined as a set of principles and practices that differs as a whole from traditional

planned development. The major principles for agile information systems and software methods

include [9]:

Accept multiple valid approaches: A stable architecture, a tool orientation and component based

development combine to enable a “fluid view” of methodology and the value of tailoring the

methodology for each development project. Improvisation in development approach will help

match the methodology to the constraints of the project environment.

Engage the customer: Close involvement of customers in the project enables accurate and fast

requirements elicitation, and the customers again immediate satisfaction as their ideas and

requirements arise in each new release.

Accommodate requirements change: Agility means that developers quickly and easily respond to

the shifting requirements driven by the changing environment for which the software is intended.

Build on successful experience: The “right” people are important for project success in order to

foster innovation in software development. Courage, specific knowledge, intelligence, and

commitment are needed for agile development.

Develop good teamwork: The right mix of people operating with the right process framework

means that the right mix of knowledge and working style will be present in the project. Agile

development teams must often come together quickly and be immediately effective.

Agile practices include:

Develop in parallel: Releases may be completely developed in parallel, or staged onto the market

such that design, development, and quality assurance are all taking place simultaneously, but

sequentially on different releases. Coding may even begin before the requirements are declared.

Release more often: Releases are scoped to more frequently deliver small sets of new features and

fixes. Constant re-prioritization of features enables responsiveness to changing requirements and

enables features to easily slip from one release to the next.

Depend on tools: Heavy use of development tools and environment that speed up the design and

coding process offer much of the functionality that used to be custom built. Ideally, agile

developers try to avoid wasting time repetitively building features others have already developed.

Implant customers in the development environment: Fast and intimate access to customer views

and opinions slashes time, and ensures the high-priority features are built first. When customers

participate closely in all phases of development, cycle times shorten and teams can better chuck

requirements into logical releases from customer views.

Establish a stable architecture: This anchors a rapid development process that is never quite

stable, yet each release has some similarity and components reuse.

Computer Science & Information Technology (CS & IT) 235

Assemble and reuse components: Never unnecessarily build software from scratch when it can be

assembled from existing components. It is quicker and equally effective to acquire, integrate, and

assemble components with wrappers, including business logic software, interfaces and back-end

infrastructure.

Ignore maintenance: Building components for short life spans eliminates the need for

documentation. Assembled software can be thrown away and reassembled with greater ease than

maintaining complex and custom-build components.

Tailor the methodology daily: Operating with an overall development framework, but allowing

project teams to adjust the exact approach to the daily situation, enabled teams to meet intense

demands for speed by skipping unnecessary tasks or phases. Use just enough process to be

effective, and no more.

Security requirements for Agile Security methods and Extant Security methods:

Requirements for security methods that are targeted to be integrated into agile software methods:

The security approach must be adaptive to agile software development methods.

They must be simple; they should not hinder to the development project.

The security approach, in order to be integrated successfully with agile development methods,

should offer concrete guidance and tools at all phases of development (i.e., from requirements

capture to testing).

A successful security component should be able to adapt rapidly to ever changing requirements

owing to a fast-paced business environment, including support for handling several incremental

iterations [10].

Key Security Elements in Agile Software Development:

The key security element stems from information security “meta-notation”, or notation for

notations, and database security. Apply these key security elements to a process aimed at

developing secure software in an agile manner. This generic security process consists of these key

security elements in different phases of software development (requirements analysis, design,

implementation and testing). These steps are not necessarily sequential and in any case, every

step is optional [9].

3. IMPLEMENTATIONS AND VALIDATIONS – WEB SERVICES CASE STUDY

Privacy is a well recognized sticking point in the Web Services network. In this case study

implementation, we explore privacy protection brings about many new security challenges. Web

Services extended Cloud computing is the long dreamed vision of computing as a utility, where

users can remotely store their data into the cloud so as to enjoy the on-demand high quality

applications and services from a shared pool of configurable computing resources. By data

outsourcing, users can be relieved from the burden of local data storage and maintenance. Here

data (i.e., message/file) is transferred between the sender and the receiver in a extensively secure

manner. Hence the communication between the sender and receiver is guaranteed by the Third

Party Auditor (TPA).The software is designed in such a way that the user can easily interact with

the screen because they are GUI and screen has several buttons with captions indicating the

functionality like Sender details, message typed, searching for a file, keys and signatures

generated, shows the encrypted data, verification of data, system name details, Receiver details.

Business layer of this application are to be developed in such a way they must be easily

maintainable and extensible. Software developed will able to do ant type of data transfer between

sender and receiver in an authenticated, privacy of data contents.

Refer to the Figure 1, 2, 3 which provides the class diagram, sequence diagram and execution

screen shot respectively of the privacy web services application implemented.

236 Computer Science & Information Technology (CS & IT)

sender

JButton Submit

JButton Reset

JFrame f

JPasswordField t2

JTestField t1

static void main()

void Met()

void actionPerformed()

Client

JButton Send

JButton Clear

JButton Exit

Byte str[]

void actionPerformed()

SwingMes

byte[] content

Client ct

byte[] realSig

byte[] str

String output

String sub

String t1

String t2

String subs1

byte[] digestValue()

static boolean ServSoc()

static boolean pass()

static void Soc()

static void sen1()

static void success()

void genSig()

void keys()

void met2()

TPA

Socket s2

String subs1

String sub

String output

String output1

static void main()

static void ServSoc1()

static void Soc1()

static void Dom1()

static void Dom2()

Reciever

static byte[] content

static byte[] realSig

static byte[] realSig1

static byte[] str

ServerSocket ss

Socket s11

String args

static boolean verifySig()

static byte[] digestValue()

static void ServSoc()

static void main()

Figure 1. Class diagram of the Privacy Web Services application

 : Sender : Sender

SenderSender TransactionTransaction

 : Third Party

Auditor

 : Third Party

Auditor

 : Receiver : Receiver

1: Login

2: Invalid details

3: Valid Details

4: Enter sender name, sender password, receiver name & send

5: Enter the text or file and send

6: keys created, signature generated, enter system name

7: Send data to TPA

8: Verify details

9: Send to receiver

10: Enter sender name, receiver name

11: Open/Retrieve message/file

Figure 2. Sequence diagram of the Privacy Web Services application

Computer Science & Information Technology (CS & IT) 237

K eys , s ig natures are verified and the rec eiver rec eived

the file.

Figure 3. Execution Screen shot of the Privacy Web Services application

Validation of the Privacy Web Services Application: MDA with executable UML offers an

approach that embodies all the key ingredients of the process for developing dependable systems,

by offering: A uniform strategy for preserving investment in existing models built using

unsupported tools, by automatically migrating them to profiled UML models for subsequent

maintenance and development using state of the art UML tools; A clean separation of application

behavior from the platform specific implementation using technologies such as Integrated

Modular Avionics (IMA), allowing the full potential of IMA to be realized in a consistent and

dependable way; A semantically well defined formalism that can be used a basis for modular

certification of safety related systems; The ability to generate not only the components of the

target system, but components of development tool chain, providing scope for model translation

and offering “executable specifications” that can be tested early and mapped reliably onto the

target, leading to greater levels of dependency.

MDA is a new approach for most organizations, and therefore carries additional training and

learning curve costs and also currently the availability of production quality code generators is

currently limited. MDA requires developers to work at a more abstract level than code although

experience shows that most do not have any difficulty making the adjustment, there will be some

who find this change of emphasis difficult to achieve. Building upon the initial success of MDA

deployment so far, work is now proceeding on the enhancement of Ada code mapping rules to

cover the entire xUML formalism. Work is also underway to develop a generic “adapter/router”

component to provide a standard component to provide a standard way to interface re-engineered

xUML components with pre-existing components. These techniques are now being applied to

another avionics system in the same organization, in response to the customers need for a faster

and cheaper upgrade capability. While we consider systematically all actions within a use case

and analyze how they could be subverted, it produces all (or most) of the threats to a given

application. While all this could be done in textual version of the use case, the use of UML

activity diagrams produces a clear and more intuitive way to analyze these attacks. From the

threats we derive necessary policies to stop or mitigate them. Refer to the Figures 4,5, 6 which

provides the validated class diagram, sequence diagram and detailed sequence diagrams

respectively of the previous implemented privacy web services application.

238 Computer Science & Information Technology (CS & IT)

M anager
m anagerId : s tring

openA c c ount()

c los eA c c ount(ac c No)

provideA c c ountDetails (ac cNo)

C ustom er
c us tNam e : s tring

ac c No : num ber

am ount : int

openDate : date

c los eDate : date

tradeId : s tring

openA c c ount()

c los eA c c ount()

getA c countNum ber()

getA c countDetails (ac c No)

getTradeO rder(t radeId)

perform Trade()

*

1

A ud ito r
t radeId : s tring

c hec kTradeInfo(tradeId)

B roker

t radeId : s tring

getTradeO rder(tradeId)

perform Trade()

1

*

Figure 4. Class diagram of the validation of implemented case study

Figure 5. Sequence diagram of the validation of implemented case study

Computer Science & Information Technology (CS & IT) 239

E xterna l
A ttacks

C ustom er M anager E xte rna lA tta
cker

1 : P rovide p erso na l info rm ation

If custom er
is Im poste r
o r
p rovides
F a lse
info rm ation

2 : 2 .1 C heck cred it

3: 2 .2 C rea te Sp uri ous C ard a nd de live rs to custom er

If m anager
is Im poste r

4 : C rea te Account (if 2 .1case is true)

5 : C rea te S purious A m o unt w ith A ccount (if 2 .2 case is true)

6 : Account de ta ils are g iven and asks fo r Ini ta i l d eposi t

9 : Ge t the deposit

10 : 8 .1 C rea te A uthoriza tion depend ing o n A ccount Num b er

11 : 8 .2 C rea te S purious C ard and used by this Im poste r m anager i tse lf

Threa t o f
m isuse o f
ca rd

1 2 : Issue the C ard

7 : Tries to p revent the custom er to access the ir rea l accounts (denia l o f se rvice)

8 : Tries to m ove m oney from an account to his /her own account

Figure 6. Detailed Sequence diagram of the validation of implemented case study

4. CONCLUSIONS

In this paper the major part is given to model architectural design rules using MDA so that

architects and developers are responsible to automatic enforcement on the detailed design and

easy to understand and use by both of them. This MDA approach is implemented in use of Agile

strategy in three different phases covering three different layers to provide security to the system.

With this procedure a conclusion has been given that with the system security the requirements

for that system are improved. This paper summarizes that security is essential for every system at

initial stage and upon introduction of security at middle stage must lead to the change in the

system i.e., an improvement to system requirements.

240 Computer Science & Information Technology (CS & IT)

For details of implementations, UML diagrams and documentation, please refer to the website

http://sites.google.com/site/upendramgitcse

REFERENCES

[1] Anders Mattsson, Bjorm Lundell, Brian Lings, and Brian Fitzgerald, (2009) “Linking Model-Driven

Development and Software Architecture: A Case Study”, 2009, IEEE Transactions on Software

Engineering, vol. 35, no. 1.

[2] “Real-time agility, the Harmony/ESW Method for Real-time and Embedded Systems Development”

[3] “Design Approaches”, Agile open source.

[4] Hossein keramati, Seyed-Hassan Mirian-Hosseinabadi, “Integrating Software Development Security

 Activities with Agile Methodologies”, 2008, IEEE.

[5] I. Lazar, B. Parv, S. Motogna, I.-G. Czibula, C.-L. Lazar, “An Agile MDA approach for Executable

 UML Structured Activities”, Studia Univ. Bases, vol. LII, No. 2, 2007.

[6] Yann-Gael Gueheneuc, Giuliano Antoniol, “DeMIMA: A Multilayered Approach for Design Pattern

 Identification”, 2008, IEEE Transactions on Software Engineering, vol. 34, no. 5.

[7] Spyros T. Halkidis, Nikolaos Tsantalis, Alexander Chatzigeorgiou, George Stephanides,

 “Architectural Risk Analysis of Software Systems Based on Security Patterns”, 2008, IEEE

 Transactions on dependable and secure computing, vol. 5, no. 3.

[8] Erich Gamma, “Design Patterns”.

[9] M. Siponen, R. Baserville, T. Kuivalainen, “Extending Security in Agile Software Development

 Methods”, pp 143-157.

[10] Johan Peeters, “Agile Security Requirements Engineering”.

