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ABSTRACT 
 
Document classification is a fundamental task for many applications, including document 

annotation, document understanding, and knowledge discovery. This is especially true in STEM 

fields where the growth rate of scientific publications is exponential, and where the need for 

document processing and understanding is essential to technological advancement. Classifying 

a new publication into a specific domain based on the content of the document is an expensive 

process in terms of cost and time. Therefore, there is a high demand for a reliable document 

classification system. In this paper, we focus on classification of mathematics documents, which 

consist of English text and mathematics formulas and symbols. The paper addresses two key 

questions. The first question is whether math-document classification performance is impacted 

by math expressions and symbols, either alone or in conjunction with the text contents of 

documents. Our investigations show that Text-Only embedding produces better classification 
results. The second question we address is the optimization of a deep learning (DL) model, the 

LSTM combined with one dimension CNN, for math document classification. We examine the 

model with several input representations, key design parameters and decision choices, and 

choices of the best input representation for math documents classification. 
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1. INTRODUCTION 
 

Recently, online libraries have been increasing exponentially in the number of publications [1]. 

These documents are required to be manually annotated by an expert in order to be indexed in 
online libraries. The annotation, if done manually, is an expensive process in terms of cost and 

time. For this reason, some libraries ask the authors to help with this process by adding a subject 

code before submitting the document [1]. However, this does not appear to solve the problem 

adequately, because the final subject for indexing a document should be reviewed by an expert. 
Accordingly, many studies have been conducted in automated text classification to tackle the 

problem. Most of these studies aim to find a reliable classification approach that could replace the 

expert role [2]. 
 

Thus, different classification approaches have been investigated in text classification across 

several areas. These approaches could include traditional machine learning algorithms or deep 
learning classification models. However, mathematics documents differ from documents in other 

areas because the former contain mathematical symbols, formulas, and expressions. Inasmuch as 

they are indispensable for a reader to understand the mathematics content, using these 

mathematical expressions as features in any classifiers model could improve the classification 
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process. In document classification, features are crucial as they can improve the accuracy and 
efficiency of the classifier or hurt them. In this study, we investigated the impact of math features 

either alone or in conjunction with the text contents of documents on the math document 

classification performance. Therefore, we conducted comparative experiments by examining a 

number of models, several key design parameters, and decision choices to choose the best deep 
learning math documents classifier design. 

 

This paper is organized as follows. Section 2 presents an overview of related work. Section 3 
discusses the dataset we used and its different set-ups. Section 4 illustrates our approach. In 

Section 5, we describe our experiments, and discuss our results. Our conclusions and future work 

are provided in Section 6. 
 

2. RELATED WORK 
 

In the field of document classification, many studies have been conducted in different areas 

aiming to find a reliable model [2], which include classical machine learning and deep neural 
networks models.  

 

Harish et al presented a general technical review that studies the text classification and conducted 
a performance comparison of a set of known machine learning classification models [3]. Their 

study concludes that under different criteria, such as algorithm parameters and time complexity, 

each model behaves differently. There is no optimum combination between text representation 

techniques with machine learning models that could produce the best result. 
 

In a recent study, Scharpf, et al investigated the impact of selecting and combining different 

representation techniques on the classification accuracy and cluster purity on scientific 
documents, sections and abstracts [4]. They applied different encodings techniques such as tfidf, 

and doc2vec on text and math content separately. Their study showed that text encoding 

outperforms standalone math encoding, and combining text and math encodings does not 
improve the classification performance. They observed a low correlation between text and math 

similarity, which suggests that text and math should better be treated as separate features. 

 

Dalal and Zaveri [2] presented some issues with text classification that could affect the 
performance of any model. The pre-proccessing and feature selection techniques should be 

applied carefully because they have a critical impact on performance. 

 
Our work is aligned with [5], [6], and [1], where they focused on mathematics document 

classification. Barthel et al presented a large-scale experiment by applying simple pre-

proccessing. Although they used a large dataset, about three million documents, they limited the 

experiments to metadata only. Despite the fact they presented good results, it would not be 
possible to classify papers that have short or no abstract using their model. In addition, if a 

formula is too simple, during the pre-processing stage, they added it to the only-text features; this 

enrichment of the only text features could have some impact on performance that was not 
investigated in that paper. In our paper, we are curious to comprise a large set of formula features 

beyond what is revealed in the metadata only. Therefore, we adopt the full-text dataset including 

the metadata. 
 

In a recent paper [6], Suzuki and Fujii investigated math document classification, but they used 

MATHML that produces the math features in a tree structure, whereas we use LLaMaPUn [7], 

and our math features are linear rather than tree-structured. 
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In terms of deep neural networks [8], [9] and [10] studied different deep neural network models 
on the text classification task. Semberecki and Maciejewski applied long short-term memory 

(LSTM) model in documents classification to study different representations approaches [8]. 

Their evaluation showed that the vector representation approach outperformed a standard bag-of-

word approach based on the LSTM model in the document classification task.In [9] a recurrent 
Convolutional Neural Network (CNN) model was proposed for text classification. They applied a 

recurrent structure to capture the contextual information in order to construct the representation 

of the text. In addition they applied max-pooling to capture the main tokens in the text. Their 
experiments were conducted on four different datasets, and showed that their proposed model 

outperformed CNN and Recursive Neural Networks (RNN).A hybrid architecture consisting of 

an LSTM model and CNN model was proposed for different text classification tasks in [10]. 
Their experiments showed that combining these two models in one architecture outperforms both 

CNN and LSTM alone. 

 

3. DATASET 
 

3.1. Dataset Collection 
 

In order to evaluate our models, we obtained one of the HTML5 dataset subsets [11]. It is a large 
scale dataset recently published by the arXiveLive project [12]. It consists of over a million 

scientific documents from the arXiv.org [13], converted from the original LaTeX format to 

HTML format using the LaTeXML conversion tool [14], then grouped based on the conversion 
success level into three subsets. Since not all the math documents converted fully (without errors 

and warnings) using LaTexML, we selected only the documents that had no conversion issues. 

This resulted in a smaller subset, but large enough, which we used for this work. This subset 
consists of 705,095 multi-label documents assigned to one or more subjects from seven major 

areas: Physics, Computer Science, Mathematics, Quantitative Biology, Quantitative Finance, 

Statistics, Electrical Engineering and Systems Science, and Economics. For the Mathematics 

area, ArXiV uses a set of 32 subjects to label math documents inclusively. The first subject that is 
assigned to a document reflects the principal contribution of that document, and all other 

subjects, if any, are considered a secondary principal contribution. 

 
Our focus in this study is document classification in the Mathematics areas; therefore, from the 

used subset we retrieved a collection of about 171,000 full-text English-language documents with 

math subject as a first label. The number of documents in each subject varies from 372 to 20522. 

The popularity of math paper submissions varies from subject to subject, causing a bias between 
the numbers of documents in the different subject areas. Therefore, we will consider weighted 

accuracy in future work. In addition, the size or length of the documents varies; some documents 

are short papers while others are dissertations with a significantly large number of pages. For this 
reason, the input length is one of the parameters that we considered in the training process. Table 

1 provides detailed information regarding the subject distribution in the dataset. 
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Table 1.  Dataset Statistics based on the number of documents in each subject. 

 

Subject #of 

Document 

Subject #of 

Document 

Subject #of Document 

mathGT 3075 mathST 3155 mathCO 14116 

mathGR 4902 mathMP 20627 mathCT 327 

mathKT 416 mathAG 10577 mathDS 7895 

mathMG 1335 mathAT 1697 mathGM 819 

mathNT 7698 mathAP 18145 mathHO 480 

mathNA 4869 mathCA 6947 mathIT 6413 

mathOA 2076 mathAC 4370 mathLO 2317 

mathOC 4321 mathCV 4819 mathPR 11523 

mathQA 3040 mathDG 9724 mathRT 1817 

mathRA 2703 mathFA 8470 mathSG 542 

mathSP 786 mathGN 1164 

Total # of Documents  171165 

 

3.2. Dataset Preparation 
 

One of the advantages of the HTML format is preserving all the properties of formulas and 
mathematical expressions. However, NLP tools require text data; therefore, an additional step of 

converting the HTML format has been done. In order to get the raw text, we applied the 

LLaMaPUn [7] toolkit. The raw text is segmented into three different sets: (1) Text and Math, (2) 
Text, and (3) Math. The Text-and-Math set is the original output of the LLaMaPUn, Figure 1 

shows the input for this set. While the Text set consists of a clean text without any math formulas 

or expressions, as shown in Figure 2, the Math set consists of only math formulas and 

expressions, as shown in Figure 3. 
 

 
 

Figure 1.  The input for Text and Math set 

 

 
 

Figure 2.  The input for Text set 
 

 
 

Figure 3.  The input for Math set 
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3.3. Dataset Pre-processing 
 

Data pre-processing is an essential step for any text-based task. For each set resulting from the 

segmentation step, we applied different pre-proccessing. For the Text set, we applied the 
following processing: text normalization and text removal. Specifically, in the text normalization 

step, we replace all punctuation with a keyword PUN, and all numbers with keyword NUM. In 

the text removal step, we used the Natural Language Toolkit (NLTK) [15], to omit stop-words 
since they carry less significance in classification [2]. Also, we discarded all non-English words 

and words with length more than 25. In addition, as math documents contain theories' names and 

other named entities, which are case-sensitive, we preserved case-sensitivity. For the Math set, 

math formulas and expressions are case-sensitive, hence, we used LLaMaPUn to preserve case-
sensitivity, font styles, weights and faces [16]. Finally, a combination of the set-specific (i.e. Text 

set and Math set) pre-processing steps has been applied on the Text-and-Math set. 

 

 
 

Figure 4.  The Approach for Classifying Mathematics Document 

 

4. THE DEEP LEARNING APPROACH 
 

Our approach consists of (1) examining a deep learning model architecture with several key 

design parameters; (2) evaluating the model on document classification, and (3) investigating the 
best feature set based on the performance. Recently, deep learning models have shown significant 

improvements in different NLP tasks such as Question Answering [17], Information Extraction 

[18], and Text Classification [8], [9] and [10]. Different architectures including RNN [19] and its 
variants LSTM [20], BiLSTM [21], CNN [22], and Attention [23] have been widely studied for 

different Neural Network Language Processing (NLP) tasks.  

 
While there is no rule that defines which model is the right one for a specific task, the task 

objective and the input characteristics play an important role in narrowing the set of models 

candidates. For example, the RNN has two limitations which are exploding gradient and 

vanishing gradient [24]. The vanishing gradient could accrue with a long sequence input, which 
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is the case in document classification. Fortunately, the LSTM model tackles the gradient 
problems and is able to capture long-term dependencies in any length sequences. In addition, 

combining CNN with LSTM in one architecture outperforms LSTM model in text classification 

[10].  

 
Therefore, our focus in this paper is to study LSTM with one CNN layer on the math documents 

classification with different setups. Our model, shown in Figure 4, consists of four layers: an 

embedding layer, a 1D CNN layer, an LSTM layer, and a softmax layer.  The model starts with 
feeding the document as raw input features into the embedding layer, which passes its 

embeddings to the CNN layer; the CNN layer derives important features and passes them to the 

LSTM layer [24]. Finally, the output of the LSTM layer is fed to the softmax layer that 
determines the class of the input document. 

 

As we are dealing with math documents which contain text with math formulas and expressions, 

we define three different sets of input representations: Text-Only and Math-Only, and Text-Math 
as detailed in section 2.2. 

 

5. EXPERIMENTAL RESULTS AND ANALYSIS 
 

5.1. Experiments 
 

Our model is built using the deep learning platform Keras [25] with Tensorflow [26] as the 
backend framework. In order to train and evaluate the classifier, we divided the dataset randomly 

into 80\% training and 20\% testing split. For all setups we report and compare the accuracy on 

the test set. The categorical-crossentropy is the loss function used, and for optimizing all models 
Adam is used [27]. All Out-Of-Vocabulary (OOV) words are randomly initialized.  

 

The main parameters we focused on are the documents length and the word embeddings. We 

examined different input length (1000, 1500, 2000), where an input length of N means that from 
each document, only the first N tokens are taken while the remaining tokens are ignored. This is 

commonly done in deep learning for memory and speed considerations. In the embedding setups, 

we evaluated our model based on the word embeddings types using two main methods: 
Randomly Initialized embeddings, and GloVe embeddings. For the GloVe embeddings we have 

experimented with the type of the data used to train the embeddings, and the size of embeddings 

dimensions. Specifically, we used pre-trained embeddings from [11] which are trained on global 

data in different subject areas including math; we refer to the pre-trained GloVe embedding as 
GloVe-PR. GloVe-PR came in one dimension size 300 and two flavors based on its training data: 

Text only excluding math symbols and expressions, and text-and-math which includes both the 

text and the math symbols and expressions. 
 

In addition to the pre-trained embeddings, we trained our own GloVe on our dataset, which 

includes math subjects only. We follow similar setups and parameters used in [11] with 
additional dimension sizes in (100, 200, 300); we refer to this mode of embedding as GloVe-M. 

For all pre-trained embedding experiments, GloVe-PR and GloVe-M we evaluate both tuning the 

word embeddings and freezing the word embeddings layer. For the baseline, we trained the 

LSTM model using randomly initialized embeddings. 
 

5.2. Results 

 

We report in Tables 2, 3 and 4 the performance of the models based on the different setups. Table 

2 illustrates the accuracy performance corresponding to embedding dimension of 100 in all 
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models and all different input lengths. In this table Text-Only outperforms both the Text-Math 
and Math-Only, where the highest results across all models are given by GloVe-M+Tuned model. 

We also observe that increasing the input length provides some improvement, though the gains 

are very modest.The results of 200 embedding dimensions are shown in Table 3. Overall, we 

observed similar trends to the ones we observed in Table 2, except for the input length impact on 
the results. In particular, adding more input data resulted in sustainable improvement in the 

performance. 

 
Table 2.  Classification Experimental Results of the 100 Embedding Dimension. The numbers represent the 

classification accuracy on the test set. 

 

Input length Model Text-Math Text-Only Math-Only 

 

 

1000 

Baseline 57.4 64.08 37.7 

Random-Embedding 56.78 63.68 39.42 

GloVe-M 52.27 60.77 22.1 

GloVe-M+Tunned 57.98 65.1 35.43 

 

 

1500 

Baseline 59 65.94 38.94 

Random-Embedding 58.07 65.91 41.53 

GloVe-M 54.33 62.68 12.74 

GloVe-M+Tunned 58.5 67.08 37.04 

 

 

2000 

Baseline 59.43 65.86 39.85 

Random-Embedding 59.2 66.33 42.59 

GloVe-M 54.37 63.73 23.84 

GloVe-M+Tunned 60.19 67.87 38.18 

 

Table 3.  Classification Experimental Results of the 200 Embedding Dimension. The numbers represent the 

classification accuracy on the test set. 

 

Input length Model Text-Math Text-Only Math-Only 

 

 

1000 

Baseline 58.07 64.55 37.38 

Random-Embedding 56.8 64.4 38.68 

GloVe-M 52.78 71.74 10.45 

GloVe-M+Tunned 58.41 65.38 34.76 

 

 

1500 

Baseline 58.87 65.87 38.93 

Random-Embedding 58.14 65.9 41.34 

GloVe-M 55.31 63.49 26.65 

GloVe-M+Tunned 59.37 66.41 36.89 

 

 

2000 

Baseline 59.82 66.2 46.71 

Random-Embedding 59 67.21 43.65 

GloVe-M 56.7 68.07 20.48 

GloVe-M+Tunned 60.33 68.04 38.56 

 

Table 4 shows the results using 300 dimension embedding with different input lengths. In 
general, the Text-Only yields the best performance compared to both the Math-Only and Text-

and-Math across all setups. Specifically, in the GloVe-PR+Tuned model with the 2000 input 

length, Text-Only outperforms the Math-Only and Text-Math with 24.13\% and 7.7\% gain 

respectively. For embedding types, both GloVe-PR+Tuned and GloVe-M+Tuned produced the 
best results across different input length.     
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Table 4.  Classification Experimental Results of the 300 Embedding Dimension. The numbers represent the 

classification accuracy on the test set. 

 

Input length Model Text-Math Text-Only Math-Only 

 

 

1000 

Baseline 58.04 64.6 36.71 

Random-Embedding 57.15 63.5 40.04 

GloVe-PR 52.8 62.36 39 

GloVePR+Tunned 58.48 65.52 40.22 

GloVe-M 54.03 62.18 26.52 

GloVe-M+Tunned 58.29 65.1 31.11 

 

 

1500 

Baseline 59.31 65.94 38.61 

Random-Embedding 58.48 66.08 41.58 

GloVe-PR 55.81 63.67 40.38 

GloVePR+Tunned 59.56 67.06 41.67 

GloVe-M 55.84 63.66 28.79 

GloVe-M+Tunned 59.73 67.08 31.17 

 

 

2000 

Baseline 60.12 65.86 39.91 

Random-Embedding 55.95 66.24 42.96 

GloVe-PR 56.94 65.37 42.62 

GloVePR+Tunned 60.54 68.24 44.11 

GloVe-M 56.32 64.39 14.42 

GloVe-M+Tunned 60.24 67.87 37.63 

 

Interestingly, the result shows that the classifiers performance degraded when including the math 

formulas and expressions. The best Text-Only model performed significantly better than the other 

models that contain math information. Thus, considerable improvement can be achieved when 
omitting all the math information from the text. 

 

We believe the reason that the Text-Only model performs better is twofold. First, unlike text 

tokens, the math symbols in equations and expressions are abstract and often generic, thus 
lacking any differentiation power. Second, when we include math tokens and fix the number of 

tokens taken to represent a document, the number of text tokens in the representation in the Text-

and-Math model is fewer than in the Text-Only model, thus ending up with fewer differentiating 
features in the Text-and-Math model than in the Text-Only model, resulting naturally in lesser 

accuracy. 

 

With respect to the input length and embeddings size, all models seem to benefit from increasing 
both factors. However, this improvement is slight with increasing the embeddings size as shown 

in Table 5. 

 
Table 5.  Best Performance in Text Only among different Dimensions and Input-Length. 

 

Model Dimension Input-Length Accuracy 

GloVePR+Tunned 300 2000 68.24 

GloVe-M 200 2000 68.07 

GloVe-M+Tunned 100 2000 67.87 

 

6. CONCLUSIONS 
 

Mathematics document classification is an important problem to address due to the growing 

demand for automatic models to handle such task. Document classification in general and the 
Mathematics document classification in particular are still an open challenge given the large set 

of subjects associated with a document.   
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Thus, in this study, we carried out comparative experiments using well-known deep learning 
models, LSTM with one dimension CNN. One main goal of this study is to investigate the impact 

of inclusion/exclusion of the math features on the classification output. The other main goal was 

to identify optimal models, optimal feature representations, and optimal design choices.  

 
The results showed that overall the model performance improved with excluding all math 

information from the document, using the Text-only representations.  Furthermore, the result of 

testing the impact of input length and embeddings size showed that increasing both factors 
impacted the performance positively. Specifically, larger improvement was achieved with 

increasing the input length and smaller improvement achieved with increasing the embedding 

size.  
 

Of all the models and variations in parameters and design choices considered, the best choice was 

determined to be: 300D embedding with input length of 2000, and with post-trained (i.e. tuned) 

GloVe embedding that was pretrained on global data. 
 

This study can be improved in several ways. For instance, in our future work, we are planning to 

use the full text from a document for further experiments and testing. We also plan to investigate 
other embedding representations such as Word2Vec/Fasttext and contextualized embeddings (i.e. 

ELMO and BERT), and test other deep neural architectures. 
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