
Unsupervised Named Entity Recognition for

Hi-Tech domain

Abinaya Govindan, Gyan Ranjan, and Amit Verma

Neuron7.ai, USA

Abstract. This paper presents named entity recognition as a multi-answer QA task combined
with contextual natural-language-inference based noise reduction. This method allows us to use
pre-trained models that have been trained for certain downstream tasks to generate unsupervised
data, reducing the need for manual annotation to create named entity tags with tokens. For each
entity, we provide a unique context, such as entity types, definitions, questions and a few empirical
rules along with the target text to train a named entity model for the domain of our interest. This
formulation (a) allows the system to jointly learn NER-specific features from the datasets provided,
and (b) can extract multiple NER-specific features, thereby boosting the performance of existing
NER models (c) provides business-contextualized definitions to reduce ambiguity among similar
entities. We conducted numerous tests to determine the quality of the created data, and we find
that this method of data generation allows us to obtain clean, noise-free data with minimal effort
and time. This approach has been demonstrated to be successful in extracting named entities,
which are then used in subsequent components.

Keywords: natural language processing,named entity recognition unstructured data generation,
question answering, information retrieval

1 Introduction

The increasing availability of open source Natural Language Processing (NLP) re-
sources and toolkits, combined with the massive amount of data generated every
day, necessitates the development of tools that can analyse this data and extract
useful information. Unfortunately, just because there is more data being generated
every day does not indicate that it can be used to train modern deep learning
systems.

In NLP, named entity recognition (NER) is a crucial task which aims to recog-
nise and classify named items such as persons, locations, and events. These ex-
tracted named entities are used in a variety of NLP operations to help make better
sense of unstructured data.

Some of the early applications of NER included human name identification in a
given system such as [1], question answering models [2] that use entity recognition
to improve search results and document summarization systems such as [3], where
NER identifies significant parts of text that contribute to summaries.

Neural network-based models have recently improved the performance of NER
tasks, due to the advances in deep learning. For various human languages, in-
cluding English, French, and Chinese, named entity models have been developed.

David C. Wyld et al. (Eds): NLPTA, EDU, DSA, IoTE, VLSI, DPPR, ACITY, AIAA, CNDC - 2021
pp. 209-220, 2021. CS & IT - CSCP 2021 DOI: 10.5121/csit.2021.111917

http://airccse.org/cscp.html
http://airccse.org/csit/V11N19.html
https://doi.org/10.5121/csit.2021.111917

Since NER is becoming more important across many fields and businesses, domain-
specific NER technologies have become the new focus. Several NER models for the
medical domain system such as [4], have been created to identify a variety of med-
ical categories, including Genes, chemicals, diseases, and so on. This is due to (a)
the availability of open source data for all of these areas, such as [5], (b) These
datasets do not have any confidentiality associated and thus suitable for training.

However in some domains, using these architectures may be insufficient because
the performance of these models is dependent on the quantity and quality of la-
beled data, and annotated data generation might be particularly difficult because
these models require a large amount of high-quality data. This drives researchers to
hope to develop a mechanism for extracting semantic and lexical knowledge from
enormous amounts of unstructured, unlabeled data, which can then be applied to
the NER task thereby improving the performance.

[6] are creating a Service Intelligence platform that, given a faulty hi-tech hard-
ware, recommends actions and provides actionable insights to the repair technician.
While there are commercial applications to create, edit, and search technician notes,
historical technician repair notes have not been leveraged to derive insights. A key
characteristic of insight recommendation engine is to understand the context of
these notes, which is provided by the named entities, and given the unstructured
nature of these notes, is not trivial to extract. These extracted named entities a)
directly assist technicians by giving focused and most informative segments of the
notes, allowing them to spend less time reading and perceiving the notes. b) provide
an overview of the problem along with recommendations for parts or locations that
the technician should investigate further.

So after careful evaluation based on the above criteria, classes such as Model
name, Parts replaced, Error codes, Frequency, Amplitude, Functional Test per-
formed are the entity tags that we chose to extract and train.

The goal of this research is to present a system for generating labeled data that
can be used directly to train a domain-specific NER model. We perform our exper-
iments on technical case descriptions and technician notes that have been raised
on the service intelligence platform. These notes along with the extracted entities
provide a technical insight onto what could be the reason behind the exhibited
symptom and subsequently the proposed resolution.

From the generated data, we only retain the best quality data, rejecting the
ambiguous data points and reducing the noise by employing an ensemble of nu-
merous definitions and business contextualised rules. We also go over the results of
fine-tuned models and architectures trained on the generated data.

In this paper, we study various approaches of data generation to train custom
named entity modlels. We show our proposed system and novel modules imple-
mented to achieve unsupervised data generation. We also compare the performance

Computer Science & Information Technology (CS & IT)210

of various deep learning models trained on the generated data along with associated
results which depict the effectiveness of our system.

1.1 Related work

Due to the domain specific terminologies and ambiguity of these business terms,
Named Entity Recognition (NER) has been deemed a relatively challenging prob-
lem in the domain of Hi-Tech. Experiments conducted by [7] show that external
knowledge can be helpful in classifying the same terms as different named entities
depending on the context. Earlier works like [8] have used rule based and dictionary
based approaches to solve the NER task for particular domains and languages. How-
ever, these approaches have weak generalisation properties when applied to unseen
data.

Other learning based systems developed by [9] abd [10] have wide applications
across a variety of domains but have some limitations, such as the lack of specific
domain knowledge integration and the inability to handle novel entity types with
limited data availability. They are also occasionally under-optimized for accuracy
due to the usage of less powerful models, resulting in poor performance in down-
stream activities. For the task of NER, researchers such as [11] , [12] have developed
machine learning models such as Hidden Markov Models (HMM) and conditional
random fields (CRF). These machine learning methods, however, demand compre-
hensive and time-consuming feature identification and extraction, which can be
costly in terms of manual labour.

Modern deep learning architectures for NER, such as [13], overcome the issues
faced by these models. These models generally function best on massive amounts of
labeled data, and are thus frequently created for open-source or academic sources.
[14] attempts to solve the paucity of data in a few areas by transferring an ANN
model trained on a large labeled dataset to a smaller unlabeled dataset. Other syn-
thetic data generation-based methods include (a) back-translation, noise reduction,
and parallel sentence extraction as suggested by [15] (b) data labelling modules that
use open source websites such as Wikipedia and Google to label data automatically
as proposed by [16].

2 Our work

2.1 Task formulation

NER is defined in traditional systems as a token level multi-class classification task.
For the purposes of this study, we will concentrate on data generation and trans-
formation into a format that comprises of text tokens and corresponding named
entity tags. The named entity tag is created as

B − ek, I − ek andO

Computer Science & Information Technology (CS & IT) 211

where ek is the entity type. As a result, given any token and context C1, C2, C3..Cn,
the unsupervised data generation module generates tags L1, L2, L3...Ln which are
used to fine-tune a named entity classifier. The tags must be grouped into B and
I for us to identify the beginning and end of each entity. We employ four forms of
knowledge context based on our experiments: entity types, questions that represent
each entity type, definitions for each entity type, and business rules created for each
entity type. Due to the lack of innate business domain features and standards, text
sequence by itself may not enable us obtain the optimum labels for the provided
data, therefore these knowledge contexts are essential to enhance the quality of the
data generated.

2.2 Dataset

The data we used for this study was our service intelligence platform’s unstructured
agent notes and issue descriptions created by technicians. We must be able to give
high-quality named entities with a small margin of error because the extracted
entities directly assist the technicians in understanding the problem and prescrib-
ing solutions. However, due to many limitations in these unstructured notes, such
as domain specialised language, a lack of correct linguistic structure, and shorter
chunks of text with condensed information, this is not a simple process.

Due to these restrictions, annotated named entities are required to capture all of
these information in the tagged data so that the NER model can learn them. To pro-
duce named entities from technician notes for diverse product lines, we use various
unsupervised approaches such as question answering, natural language inference,
and conditional text generation. Not all entity tags have a similar distribution of
tagged data, resulting in an imbalance in the data. We accommodate for this im-
balance by giving tailored context along with the text sequence to assist the model
to learn these features better.

2.3 Candidate generation

The overall approach for data generation is depicted in 1

The first stage of data generation entails extracting candidate named entities
using an ensemble of multiple variants of QA models fine tuned on SQuAD [17].We
employ an ensemble because we want to minimise the error that a single model
can produce, and extract candidates with high confidence using majority voting
approaches. This would allow us to reduce the noise produced by these separate
models while also maximising their aggregate performance.For each of the men-
tioned entities, we create a few templates such as:

– What were the parts replaced for Replaced parts ,

– What was the error code mentioned in the note for Error code

Computer Science & Information Technology (CS & IT)212

Fig. 1. Architecture for data generation and NER training

– What was the value of frequency mentioned for Frequency

– What was the value of amplitude mentioned for Amplitude

During our investigation of the coverage of annotated labels, we determined that
a one-to-one question-to-entity type mapping effectively covered these entity tags.
For the entity type Functional test, we ask a few different variations of questions,
such as What test was performed , What was the name of the test that failed etc. .
These question variants enabled us capture a large number of annotated sample for
this entity type. In this dataset, these were the best-performing questions during
inference.

As demonstrated in [18], we used several models fine tuned on SQuAD2.0
dataset. Using these models in an ensembled fashion helps in more accurate named
entities when compared to using a single model, which in turn improves the final
NER model’s performance.

2.4 Context and definition based candidate noise reduction

Once we’ve arrived at a list of candidate entities, we finalised a set of carefully
crafted definitions for each of the entity tag, based on business expertise that was
provided by the technicians and experts. The definitions were

– Frequency is the rate at which current changes direction per second. Frequency
is measured in Hertz (Hz)

– Amplitude is the maximum displacement or distance moved by a point on a
vibrating body or wave measured from its equilibrium position. I. Amplitude is
measured in decibels (dBs)

Computer Science & Information Technology (CS & IT) 213

– A functional test refers to an operational test performed on a machine that
indicates which part of a machine fails.

We incorporate these definitions for additional noise reduction by providing
this as a context to a text generation model which was fine tuned to answer
Boolean questions as in [19]. To validate the predicted entity for each entity type,
we provide the curated entity type definition as additional context in the format
“Context(definition) - Sequence” as input to the boolq based text generation
model. We also provide question to this model in the format, “Does ek follow
the context mentioned?” where ek is the predicted entity. The fine-tuned model
responds with either a “yes” or “no” answer, allowing us to retain the candidates
which confine to the business contexts.

Since the fine tuned QA ensemble isn’t powerful enough to provide only the
appropriate entities due to absence of domain knowledge, and is frequently linked
with false positives, this textual generation-based noise reduction helps us increase
the coverage of predicted entities with minimum false positive rate.

2.5 Business rule based Candidate enrichment

In addition to the entities generated by the question answering models, we created a
set of business rules to extract a few other entity types that could not be processed
by question answering approaches due to lack of linguistic structure in the notes
in which these entities appear. These entities include named entities that we have
some prior knowledge about and would like the model to learn for generalisation
purposes, such as Model Number. We generate annotated data for these labels using
a collection of ”seed entities” as the knowledge context. When we utilise this data
to fine-tune the model, it learns the latent patterns in which these entities appear
and predicts newer entities of this type that may appear in the future.

2.6 Aggregation of generated data

Once the data has been generated using these approaches, we pass it to a collator,
which aggregates all of the various predictions in such a way that

– Each token has been tagged to only one single entity, since in our use case, it
has been proven that there would be no scenario where one token would belong
to more than one entity type.

– Each text sequence has a set of non-overlapping entities. The data generation
pipeline tags multiple sub sequences of text to a particular entity type, there
are cases where they might end up overlapping with each other. For example,
in the sequence The machine failed self-test during boot up may have sequences
such as failed self-test , failed self-test during boot up tagged to the entity type
Functional tests. The collator looks at various factors such as model prediction

Computer Science & Information Technology (CS & IT)214

probability, length of sequence tagged and linguistic properties such as noun
chunks to choose the most relevant sub sequence among these sequences.

2.7 Explanation and breakup of tagged data numbers

At the end of this module, for the unstructured agent note inputs, we have credible
tagged data which can now be fed into our named entity fine tuner. The distribution
of the tagged data is as depicted in 1 :

Table 1. Data distribution

Entity type Number of samples Percentage of contribution
O 111662 79.69%
I-Test 17565 12.53%
B-Test 5539 3.95%
I-Replaced Parts 1895 1.35%
B-Replaced Parts 1057 0.75%
B-model Number 624 0.45%
I-Amplitude 503 0.36%
B-Frequency 474 0.34%
B-Amplitude 397 0.28%
I-Frequency 334 0.24%
B-error code 35 0.02%
I-error code 31 0.02%
I-model Number 13 0.01%

3 Model Description

3.1 Model Architecture

The basic architecture we use for model training is depicted in 2

Fig. 2. BERT/ELECTRA/RoBERTa based NER model architecture

Based on the experiments we performed, we chose to fine-tune our NER task
on pre-trained architecture such as BERT, RoBERTa and ELECTRA and compare

Computer Science & Information Technology (CS & IT) 215

the performance that was best suited for our use case. From the generated data, we
provide tokens in the sequence and named entity types with the B and I tags (to
indicate if the token is a start or rest of the named entity) as input to the model.
So we define a set of tokens C = {cj} i.e. [CLS] , c1 , c2, ..., cn [SEP] as input to the
pretrained model where n is the number of tokens present in the text. We provide
named entity tags such as O,B − ek, I − ek, ..., O,O as output for our model. For
the input text, the model predicts a tag for each token at the end of the output
layer.

3.2 Contextualization

We chose transformer based architectures such as BERT, RoBERTa and ELECTRA
to find the ideal model for our use case. We modified the architectures by adding
a contextualisation layer in terms of two fully connected layers. We chose fully
connected layers since a we intend to learn features from all the combinations of
the embedding and to learn maximum information with the limited data made
available to us. To handle the interaction effects and capture non-linearity of the
data in a better way, we add a ReLU unit at the end of each fully connected
layer. We take the output of these fully connected layers and feed it to the final
feed-forward output layer to predict the entity tags for each token.

3.3 Training and Testing

During training, the tokens for each sequence X (generated based on context, def-
initions and entity types) have annotations of ek where k is the number of entity
types for each token. We calculate categorical cross entropy loss for each token as

CEk = −
C∑
i=1

tilog(pi) (1)

where C is the total number of entity classes, ti is a binary indicator if class
label c is a correct prediction for the token k and pi denote the predicted probability
of token k belonging to class c.

The model is trained for 15 epochs with learning rate of 5e−5 and validated
using f1-score on a hold-out sample. We trained the same architecture with various
pre-trained transformer architecture such as BERT, RoBERTa and ELECTRA.
The models were trained with same architecture so that their performances can be
compared.

During inference, the text is passed as tokens and the tags which start with B
and continue till I are considered as a single entity and validated accordingly. In
practice, we deployed the best performing model among the three architectures to
suggest named entities to technicians.

Computer Science & Information Technology (CS & IT)216

4 Experiments and data

Fig. 3. train and val loss for BERT based NER

Fig. 4. train and val loss for RoBERTa based NER

4.1 Comparison of performance metrics

The following table 2 shows various performance metrics such as precision, recall
and f1-score for the final fine-tuned models based on the various architectures dis-
cussed.

We use a learning rate of 5e−5 for all our experiments. The maximum sequence
length was defined as 128 based on what we saw in the training data. This was
based on the average sequence length of the technician notes that we encounter.
During inference, if we face longer sequence, we break the text into logical chunks
of 128 token-long sequences and process that for testing. We use the metrics train
loss, validation loss, precision, f1-score for evaluation of model performance.

Computer Science & Information Technology (CS & IT) 217

Fig. 5. train and val loss for ELECTRA based NER

ELECTRA BERT RoBERTa

TRAIN VALID TRAIN VALID TRAIN VALID

LOSS 0.19 0.30 0.38 0.44 0.11 0.18

PRECISION 0.72 0.71 0.65 0.56 0.81 0.80
RECALL 0.77 0.70 0.63 0.56 0.81 0.78
F1-SCORE 0.74 0.69 0.64 0.55 0.81 0.79

Table 2. Overall Performance and loss report

4.2 Comparison of train and validation loss

The train and validation loss for the models fine tuned based on BERT, RoBERTa
and ELECTRA based architectures are depicted in 3 to 5 . From the figures we can
see that the RoBERTa model has got the least validation and train loss and this is
also reflected in the performance of the model for individual entity tags as well.

4.3 Class level performance comparison

The class level metrics for the models were depicted in 3. We compare performance
metrics such as train and validation precision, recall and f1. To maintain equal
significance to all the classes, including the imbalanced ones, we use macro averaging
based F1 measure.

Macro F1 measure is calculated as follows

MacroF1score =
1

C

N∑
i=1

f1i

where

f1 =
(2 ∗ precision ∗ recall)

(precision + recall)

(2)

4.4 Inference

The model trained based on the RoBERTa based embeddings performed consis-
tently on all the classes in both train and validation data. This can also be infered

Computer Science & Information Technology (CS & IT)218

ELECTRA

Amplitude Frequency Replaced Parts Test error code model number Overall

TRAIN PRECISION 0.83 0.64 0.71 0.67 0.67 0.81 0.72
RECALL 0.60 0.64 0.79 0.82 0.81 0.99 0.77
F1-SCORE 0.69 0.64 0.75 0.74 0.73 0.89 0.74

VALID PRECISION 0.84 0.58 0.58 0.59 0.83 0.83 0.71
RECALL 0.52 0.70 0.69 0.66 0.62 1.00 0.70
F1-SCORE 0.64 0.64 0.63 0.62 0.71 0.91 0.69

BERT

Amplitude Frequency Replaced Parts Test error code model number Overall

TRAIN PRECISION 0.64 0.59 0.70 0.69 0.61 0.70 0.65
RECALL 0.48 0.58 0.60 0.61 0.55 0.98 0.63
F1-SCORE 0.55 0.58 0.64 0.65 0.58 0.82 0.64

VALID PRECISION 0.64 0.32 0.57 0.49 0.58 0.76 0.56
RECALL 0.49 0.31 0.54 0.42 0.59 0.99 0.56
F1-SCORE 0.56 0.31 0.56 0.45 0.58 0.86 0.55

RoBERTa

Amplitude Frequency Replaced Parts Test error code model number Overall

TRAIN PRECISION 1.00 0.59 0.71 0.76 0.85 0.93 0.81
RECALL 1.00 0.67 0.73 0.75 0.82 0.99 0.83
F1-SCORE 1.00 0.63 0.72 0.76 0.83 0.96 0.82

VALID PRECISION 1.00 0.67 0.66 0.74 0.77 0.95 0.80
RECALL 1.00 0.65 0.62 0.69 0.75 0.98 0.78
F1-SCORE 1.00 0.66 0.64 0.71 0.76 0.96 0.79

Table 3. Class level performance metrics

from the performance charts and tables. However, the BERT and ELECTRA based
models were not able to generalize well on the validation set and hence do not per-
form as well as the RoBERTa based model. So, for final inference in the product,
we used the RoBERTa based model for all the entities.

5 Conclusion and Future Work

For the task of NER, we adopt various pretrained models (BERT, RoBERTa) in
this paper. First, we concentrate on data generation utilising unsupervised methods
and sequence-to-sequence models. Then, for these entity types, we utilise certain
business definitions to eliminate the noisy labels that are generated, and came up
with empirical rules iteratively to further minimise the noise in the data. This
yields a final annotated dataset that could be utilised in any of the NER training
architectures that are based on pre-trained models. Furthermore, we show that
RoBERTa based models are better suited to our NER task.

For the purpose of this study, we focused on data quality and quantity and
utilized data generation and augmentation techniques to arrive at the best possible
training data from unstructured data. In the future, we would be concentrating
on few shot learning methodologies that would improve the model’s performance.
We also want to incorporate active learning based mechanisms to improve model’s
performance as discussed in [20].

Computer Science & Information Technology (CS & IT) 219

References

1. Paul Thompson and Christopher Dozier. Name searching and information retrieval. 12 2002.
2. Radu Florian, Abe Ittycheriah, Hongyan Jing, and Tong Zhang. Named entity recognition

through classifier combination. Proceedings of CoNLL-2003, 03 2004.
3. Martin Hassel. Exploitation of named entities in automatic text summarization for swedish.

2003.
4. Kamal Raj Kanakarajan, Bhuvana Kundumani, and Malaikannan Sankarasubbu. Bioelec-

tra:pretrained biomedical text encoder using discriminators. In BIONLP, 2021.
5. Emily Alsentzer, John Murphy, William Boag, Wei-Hung Weng, Di Jindi, Tristan Naumann,

and Matthew McDermott. Publicly available clinical BERT embeddings. In Proceedings of
the 2nd Clinical Natural Language Processing Workshop, 2019.

6. Service Intelligence Product, Neuron7.ai. https://www.neuron7.ai/.
7. Hye-Jeong Song, Byeong-Cheol Jo, Chan Park, Jong-Dae Kim, and Yu-Seop Kim. Comparison

of named entity recognition methodologies in biomedical documents. BioMedical Engineering
OnLine, 17, 11 2018.

8. Rafiullah Momand, Shakirullah Waseeb, and Ahmad Latif Rai. A comparative study of
dictionary-based and machine learning-based named entity recognition in pashto. pages 96–
101, 12 2020.

9. Christopher Manning, Mihai Surdeanu, John Bauer, Jenny Finkel, Steven Bethard, and David
McClosky. The stanford corenlp natural language processing toolkit. 01 2014.

10. A. Akbik, Tanja Bergmann, Duncan A. J. Blythe, Kashif Rasul, Stefan Schweter, and Roland
Vollgraf. Flair: An easy-to-use framework for state-of-the-art nlp. In NAACL, 2019.

11. Sudha Morwal, Nusrat Jahan, and Deepti Chopra. Named entity recognition using hidden
markov model (hmm). International Journal on Natural Language Computing, 1:15–23, 12
2012.

12. Zhiheng Huang, Wei Xu, and Kai Yu. Bidirectional LSTM-CRF models for sequence tagging.
CoRR, abs/1508.01991, 2015.

13. Jing li, Aixin Sun, Ray Han, and Chenliang Li. A survey on deep learning for named entity
recognition. IEEE Transactions on Knowledge and Data Engineering, PP:1–1, 03 2020.

14. Ji Lee, Franck Dernoncourt, and Peter Szolovits. Transfer learning for named-entity recogni-
tion with neural networks. 05 2017.

15. Dana Ruiter, Dietrich Klakow, Josef Genabith, and Cristina España-Bonet. Integrating un-
supervised data generation into self-supervised neural machine translation for low-resource
languages. 07 2021.

16. Omid Jafari, Parth Nagarkar, Bhagwan Thatte, and Carl Ingram. Satellitener: An effective
named entity recognition model for the satellite domain. pages 100–107, 01 2020.

17. Pranav Rajpurkar, Robin Jia, and Percy Liang. Know what you don’t know: Unanswerable
questions for squad. CoRR, abs/1806.03822, 2018.

18. Yuwen Zhang. Bert for question answering on squad 2 . 0. 2019.
19. Christopher Clark, Kenton Lee, Ming-Wei Chang, Tom Kwiatkowski, Michael Collins, and

Kristina Toutanova. BoolQ: Exploring the surprising difficulty of natural yes/no questions.
In Proceedings of the 2019 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short
Papers), pages 2924–2936, Minneapolis, Minnesota, June 2019. Association for Computational
Linguistics.

20. G Abinaya, Gyan Ranjan, and P Aswin Karthik. Continuous learning mechanism of nlu-
ml models boosted by human feedback. In 2019 International Conference on Computational
Intelligence in Data Science (ICCIDS), pages 1–6, 2019.

Computer Science & Information Technology (CS & IT)220

© 2021 By AIRCC Publishing Corporation. This article is published under the Creative Commons
Attribution (CC BY) license.

https://www.neuron7.ai/
http://airccse.org

	Unsupervised Named Entity Recognition for Hi-Tech domain
	Introduction
	Related work

	Our work
	Task formulation
	Dataset
	Candidate generation
	Context and definition based candidate noise reduction
	Business rule based Candidate enrichment
	Aggregation of generated data
	Explanation and breakup of tagged data numbers

	Model Description
	Model Architecture
	Contextualization
	Training and Testing

	Experiments and data
	Comparison of performance metrics
	Comparison of train and validation loss
	Class level performance comparison
	Inference

	Conclusion and Future Work

