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Abstract. Over the last few years, neural networks have started penetrating safety critical systems to
take decisions in robots, rockets, autonomous driving car, etc. A problem is that these critical systems
often have limited computing resources. Often, they use the fixed-point arithmetic for its many advantages
(rapidity, compatibility with small memory devices.) In this article, a new technique is introduced to
tune the formats (precision) of already trained neural networks using fixed-point arithmetic, which can be
implemented using integer operations only. The new optimized neural network computes the output with
fixed-point numbers without modifying the accuracy up to a threshold fixed by the user. A fixed-point
code is synthesized for the new optimized neural network ensuring the respect of the threshold for any
input vector belonging the range [xmin, xmax] determined during the analysis. From a technical point of
view, we do a preliminary analysis of our floating neural network to determine the worst cases, then we
generate a system of linear constraints among integer variables that we can solve by linear programming.
The solution of this system is the new fixed-point format of each neuron. The experimental results obtained
show the efficiency of our method which can ensure that the new fixed-point neural network has the same
behavior as the initial floating-point neural network.

Keywords: Computer Arithmetic, Code Synthesis, Formal Methods, Linear Programming, Numerical
Accuracy, Static Analysis.

1 Introduction

Nowadays, neural networks have become increasingly popular. They have started penetrat-
ing safety critical domains and embedded systems, in which they are often taking impor-
tant decisions such as autonomous driving cars, rockets, robots, etc. These neural networks
become larger and larger while embedded systems still have limited resources (memory,
CPU, etc.) As a consequence, using and running deep neural networks [26] on embedded
systems with limited resources introduces several new challenges [7,9,11,12,15,16,18,19].
The fixed-point arithmetic is more adapted for these embedded systems which often have
a working processor with integers only. The approach developed in this article concerns
the fixed-point and integer arithmetic applied to trained neural networks (NNs). NNs are
trained on computers with a powerful computing unit using most of the time the IEEE754
floating-point arithmetic [13,21]. Exporting NNs using fixed-point arithmetic can perturb
or change the answer of the NNs which are in general sensible to the computer arithmetic.
A new approach is required to adapt NN computations to the simpler CPUs of embed-
ded systems. This method consists in using fixed-point arithmetic because it is faster and
lighter to manipulate for a CPU while it is more complicated to handle for the developer.
We consider the problem of tuning the formats (precision) of an already trained floating-
point NN, in such a way that, after tuning, the synthesized fixed-point NN behaves almost
like the original performing computations. More precisely, if the NN is an interpolator, i.e.
NNs computing mathematical functions, the original NN (floating-point) and the new NN
(fixed-point) must behave identically if they calculate a given function f , such that, the
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absolute error (Equation (1)) between the numerical results computed by both of them is
equal to or less than a threshold set by the user. If the NN is a classifier, the new NN have
to classify correctly the outputs in the right category comparing to the original NN. This
method is developed in order to synthesize NNs fixed-point codes using integers only. This
article contains nine sections and an introductory example in Section 3, where we present
our method in a simplified and intuitive way. Some notations are introduced in Section 2.
In Section 4, we present the fixed-point arithmetic, where we show how to represent a
fixed-point number and the elementary operations. The errors of computations and con-
versions inside a NN are introduced in Section 5. Section 6 deals with the generation of
constraints to compute the optimal format for each neuron using linear programming [30].
Our tool and its features are presented in Section 7. Finally, we demonstrate the exper-
imental results in Section 8 in terms of accuracy and bits saved. Section 9 presents the
related work then Section 10 concludes and gives an overview of our future work.

2 Notations

In the following sections, we will use these notations:
•ℵ: Set of fixed-point numbers. •N: Set of natural integers. •Z: Set of relative integers.
•R: Set of real numbers. •F: Set of IEEE754 floating-point numbers [13]. •NN: Neural
Network. • < M x̂, Lx̂ >: Format of the fixed-point number x̂ where M x̂ represents
the Most significant bit (integer part) and Lx̂ the Least significant bit (fractional part).
•ϵx̂: Error on the fixed-point number x̂. •b: Bias. •W : Matrix of weights. •m: Number
of layers of a neural network. •n: Number of neurons by layer. •k: Index of layer. •i:
Index of neuron. •ufp: Unit in the first place [13,21]. • ReLU: Rectified Linear Unit [10,
24,29]. •T : size of data types (8, 16, 32 bits.) •⊕: Fixed-point addition. •⊗: Fixed-point
multiplication.

3 An Introductory Example

In this section, we present a short example of a fully connected neural network [3] con-
taining three layers (m = 3) and two neurons by layer (n = 2) as shown in Figure 1. The
objective is to give an intuition of our approach.

Our main goal is to synthesize a fixed-point code for an input NN with an error
threshold between 0 and 1 defined by the user, and respecting the initial NN which uses
the floating-point arithmetic [13, 21]. The error threshold is the maximal absolute error
accepted between the original floating-point NN and the synthesized fixed-point NN in all
the outputs of the output layer (max norm). This absolute error is computed by substract-
ing the fixed-point value to the floating-point value (IEEE754 with single precision [13,21])
as defined in Equation (1). To compute this error, we convert the fixed-point value into a
floating-point value.

Absolute error = |FloatingPointResult− FixedPointResult| (1)

In this example, the threshold is 0.02 and the data type T = 32 bits. In other words, the
resulting error of all neurons in the output layer (u30, u31 of Figure 1) must be equal to
or less than 0.02 using integers in 32 bits.

Hereafter, we consider the feature layer X0, which corresponds to the input vector.
The biases are b0, b1 and b2. The matrices of weights are W0, W1 and W2, such that each
bias (respectively matrix of weights) corresponds to one layer.
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Fig. 1. A fully connected NN with 3 layers and 2 neurons per layer.

The affine function for the kth layer is defined in a standard way as

fk,i : Fn −→ F

Xk−1 7−→ uk,i = fk,i(Xk−1) =

n−1∑
j=0

(wk−1,i,j × xk−1,j) + bk−1,i,

(2)

∀1 ≤ k ≤ m, ∀0 ≤ i < n, where Xk−1= (xk−1,0, ..., xk−1,n−1)
t is the input vector (the

input of the layer k is the output of the layer k − 1), bk−1 = (bk−1,0, ..., bk−1,n−1)
t ∈ Fn

and Wk−1 ∈ Fn×n (wk−1,i,j is the coefficient in the line i and column j in Wk−1.)
Informally, a fixed-point number is represented by an integer value and a format <
M,L > which gives us the information about the number M of significant bits before the
binary point and L the number of significant bits after the binary point required for each
coefficient in Wk−1, bk−1, X0, and the output of each neuron uk,i. We notice that, at the
beginning, we convert the input vector X0 in the size of the data type required T . In fixed-
point arithmetic, before computing the affine function defined in Equation (2), we need to
know the optimal formats < M,L > of all the coefficients. To compute these formats, we
generate automatically linear constraints according to the given threshold. These linear
constraints formally defined in Section 6 are solved by linear programming [30], and they
give us the optimal value of the number of significant bits after the binary point L for
each neuron. We show in Equation (3) some constraints generated for the neuron u31 of
the NN of Figure 1. 

Lu
31 ≥ 6

Lu
31 +Mu

31 ≤ 31

Lu
31 ≤ Lx

20,

Lu
31 ≤ Lx

21,

...

(3)

We notice that Lx
20 (respectively Lx

21) is the length of the fractional part of u20 (respec-
tively u21.) The first constraint gives a lower bound for Lu

31, so the output u31 in the
output layer has to fullfil the threshold fixed by the user and the error done must be equal
to or less than this one. In other words, the number of significant bits of each neuron in
the output layer must be equal at least to 6 (if it is greater than 6, this means that we are
more accurate.) The value 6 is obtained by computing the unit in the first place [13, 21]
of the threshold defined as

∀x ∈ F, ufp(x) = min {i ∈ N : 2i+1 > x} = ⌊log2(x)⌋ (4)

The second constraint avoids overflow and ensures compliance to the data type chosen
by the user (integers on 8, 16 or 32 bits.) The third and fourth constraints ensure that
the length of the fractional part Lu

31 computed is less than or equal to the length of the
fractional parts of all its inputs (Lx

20 and Lx
21.) Using the formats resulting from the solver,

firstly, we convert all the coefficients of weights matrices Wk−1, biases bk−1 and inputs X0

from floating-point values to fixed-point values.

Let bk−1, Wk−1 and X0 used in this example be
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b0 =

(
−2
4.5

)
, b1 =

(
1.2
0.5

)
, b2 =

(
3
1

)
, W0 =

(
3.5 0.25

−1.06 4.1

)
, W1 =

(
−0.75 4.85
2.1 0.48

)
,

W2 =

(
−5 12.4
0.2 −2

)
, X0 =

(
2
0.5

)
.

Table 1 presents the output results for each neuron. The floating-point results are shown
in the second column and the fixed-point results in the third one. The last column contains
the absolute error defined in Equation (1) for the output layer (u30, u31) only.

Table 1. Comparison between the floating-point and the fixed-point results corresponding to the NN of
Figure 1.

Neuron Floating-Point Result Fixed-Point Result Absolute Error

u10 5.125 2624<3,9>= 5.125 /

u11 4.43 4535<2,10>= 4.4287 /

u20 18.8417 9643<5,9>= 18.8339 /

u21 13.3889 6854<5,9>= 13.3867 /

u30 74.8136 76620<9,10>= 74.8247 1.06× 10−2 ≈ 2−7

u31 -22.0094 -22536 <7,10>= -22.0078 1.63× 10−3 ≈ 2−10

The error threshold fixed by the user at the beginning was 0.02 (6 significant bits after
the binary point.) As we can see, the absolute error of the output layer in the Table 1 is
under the value of the threshold required. This threshold is fulfilled with our method using
fixed-point arithmetic. Now, we can synthesize a fixed-point code for this NN respecting
the user’s threshold, the data type T , and ensuring the same behavior and quality as the
initial floating-point NN.

Figure 2 shows some lines of code synthesized by our tool for the neurons u10 and
u11 using Equation (2) and the fixed-point arithmetic. The running code gives the results
shown in the third column of the Table 1. For example, the line 5 represents the input
x00 = 2 in the fixed-point representation. This value is shifted on the right through 6 bits
(line 7) in order to be aligned and used in the multiplication (line 8) by w000 = 3.5
represented by 112 in the fixed-point arithmetic. The fixed-point output u10 (2624) in the
Table 1 is returned by the line 16.

4 Fixed-Point Arithmetic

In this section, we briefly describe the fixed-point arithmetic as implemented in most digital
computers [4,5,32]. Since fixed-point operations rely on integer operations, computing with
fixed-point numbers is highly efficient. We start by defining the representation of a fixed-
point number in Subsection 4.1, then we present briefly the operations needed (addition,
multiplication and activation functions) in this article in Subsection 4.2.

4.1 Representation of a Fixed-Point Number

A fixed-point number is represented by an integer value and a format < M,L > where
M ∈ Z is the number of significant bits before the binary point and L ∈ N is the number of
significant bits after the binary point. We write the fixed-point number â = value<M â, Lâ>

and define it in Definition 1.

Definition 1. Let us consider â ∈ ℵ, Aâ ∈ N such that
â = (−1)sâ .Aâ.β

−Lâ and Pâ = Mâ + Lâ + 1, where β is the basis of representation,
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1 i n t main ( )
2 { /∗ That NN has 3 l a y e r s and 2 neurons per l ay e r ∗/
3 i n t mul , u [ 3 ] [ 2 ] , x [ 4 ] [ 2 ] ;
4

5 x [ 0 ] [ 0 ]=1073741824 ; // <1,29>
6 x [ 0 ] [ 1 ]=1073741824 ; // <−1,31>
7 x [ 0 ] [ 0 ]= x [0 ] [0 ] > >6 ; // <1,23>
8 mul=112∗x [ 0 ] [ 0 ] ; // <3,9>=<1,5>∗<1,23>
9 mul=mul>>19;

10 u [ 1 ] [ 0 ]=mul ; // <3,9>
11 x [ 0 ] [ 1 ]= x [0 ] [1 ] > >7 ; // <−1,24>
12 mul=16∗x [ 0 ] [ 1 ] ; // <−2,14>=<−2,9>∗<−1,24>
13 mul=mul>>19;
14 mul=mul>>5;
15 u [ 1 ] [ 0 ]= u [ 1 ] [ 0 ]+mul ; //<3,9>=<3,9>+<−2,9>
16 u [ 1 ] [ 0 ]= u [1 ] [ 0 ]+ −1024 ; //<3,9>=<3,9>+<1,9>
17 u [ 1 ] [ 0 ]=max(0 , u [ 1 ] [ 0 ] ) ; // ReLU(u [ 1 ] [ 0 ] )
18 x [ 1 ] [ 0 ]= u [ 1 ] [ 0 ] ;
19 x [ 0 ] [ 0 ]= x [0 ] [0 ] > >3 ; // <1,20>
20 mul=−543∗x [ 0 ] [ 0 ] ; // <2,10>=<0,9>∗<1,20>
21 mul=mul>>19;
22 u [ 1 ] [ 1 ]=mul ; // <2,10>
23 x [ 0 ] [ 1 ]= x [0 ] [1 ] > >5 ; // <−1,19>
24 mul=262∗x [ 0 ] [ 1 ] ; // <2,10>=<2,10>∗<−1,19>
25 mul=mul>>19;
26 u [ 1 ] [ 1 ]= u [ 1 ] [ 1 ]+mul ; //<2,10>=<2,10>+<2,10>
27 u [ 1 ] [ 1 ]= u [ 1 ] [ 1 ]+4 6 0 8 ; //<2,10>=<2,10>+<2,10>
28 u [ 1 ] [ 1 ]=max(0 , u [ 1 ] [ 1 ] ) ; // ReLU(u [ 1 ] [ 1 ] )
29 . . .
30 re turn 0 ; }
31

Fig. 2. Fixed-point code synthesized for the neurons u10 and u11 of Figure 1 on 32 bits.

â is the fixed-point number with implicit scale factor β−Lâ (Figure 3), Aâ is the integer
representation of â in the basis β, Pâ ∈ N, Pâ = Mâ + Lâ + 1 is the length of â and
sâ ∈ {0, 1} is its sign.

Fig. 3. Fixed-point representation of â in a format < M â, Lâ >.

The difficulty of the fixed-point representation is managing the position of the binary point
manually against the floating-point representation which manages it automatically.

Example 1. : The fixed-point value 3 < 1, 1 > corresponds to 1.5 in the floating-point
representation. We have first to write 3 in binary then we put the binary point at the right
place (given by the format) and finally we convert it again into the decimal representation:
310 < 1, 1 >= 112 < 1, 1 >= 1.12 = 1.510.
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4.2 Elementary Operations

This subsection defines the elementary operations needed in this article like addition and
multiplication which are used later in Equation (11). We also define ˆReLU (respectively

ˆLinear) in fixed-point arithmetic which corresponds to the activation function in some
NNs [10,24,29].

1. Fixed-Point Addition
Let us consider the two fixed-point numbers â, b̂ ∈ ℵ and their formats < M â, Lâ >,

< M b̂, Lb̂ > respectively. Let ⊕ be the fixed-point addition given by ĉ ∈ ℵ, ĉ = â⊕ b̂.

Fig. 4. Addition of two fixed-point
numbers without a carry.

Fig. 5. Multiplication of two fixed-point
numbers.

Figure 4 shows the fixed-point addition between â and b̂. The fixed-point format re-
quired is < M ĉ, Lĉ >. The objective is to have a result in this format, this is why

we start by aligning the length of the fractional parts Lâ and Lb̂ according to Lĉ. If
Lâ > Lĉ, we truncate with Lâ − Lĉ bits, otherwise, we add Lĉ − Lâ zeros on the right
hand of â, then we do the same for b̂. The length of the integer part M ĉ must be the

maximum value between M â and M b̂. If there is a carry, we add +1 to the number of
bits of the integer part, otherwise the result is wrong. The algorithm of the fixed-point
addition is given in [20,23].

2. Fixed-Point Multiplication
Let us consider the two fixed-point numbers â, b̂ ∈ ℵ and their formats < M â, Lâ > ,

< M b̂, Lb̂ > respectively. Let ⊗ be the fixed-point multiplication given by ĉ ∈ ℵ,
ĉ = â⊗ b̂.
Figure 5 shows the fixed-point multiplication between â and b̂. The fixed-point format
required is < M ĉ, Lĉ >. The objective is to have a result in this format, this is why we
start by doing a standard multiplication which is composed by shifts and additions. If

(Lâ+Lb̂) > Lĉ, we truncate with (Lâ+Lb̂)−Lĉ bits, otherwise, we add Lĉ− (Lâ+Lb̂)
zeros on the right hand of ĉ. The length of the integer part M ĉ must be the sum of M â

and M b̂, otherwise the result is wrong. The algorithm of the fixed-point multiplication
is given in [20,23].

3. Fixed-Point ˆReLU
Definition 2 defines the fixed-point ˆReLU which is a non-linear activation function
computing the positive values.

Definition 2. Let us consider the fixed-point number â = Vâ < M â, Lâ > ∈ ℵ and
the fixed-point zero written 0̂ = 0 < 0, 0 > ∈ ℵ. Let ĉ = Vĉ < M ĉ, Lĉ > ∈ ℵ be the
result of the fixed-point ˆReLU given by

ĉ = ˆReLU(â) = m̂ax(0̂, â), (5)

Computer Science & Information Technology (CS & IT)16



where Vĉ = max(0, Vâ) and < M ĉ, Lĉ >=

{
< M â, Lâ > if Vĉ = Vâ,

< 0, 0 > otherwise.

4. Fixed-Point ˆLinear
Definition 3 defines the fixed-point ˆLinear which is an activation function returning
the identity value.

Definition 3. Let us consider the fixed-point number â ∈ ℵ with the format < M â, Lâ >.
Let ĉ ∈ ℵ be the result of the fixed-point ˆLinear activation function given by

ĉ = ˆLinear(â) = â. (6)

5 Error Modelling

In this section, we introduce some theoretical results concerning the fixed-point arithmetic
errors in Subsection 5.1 and we show the numerical errors done inside a NN in Subsection
5.2. The error on the output of the fixed-point affine transformation function can be
decomposed into two parts: the propagation of the input error and the computational error.
Hereafter, x̂ ∈ ℵ is used for the fixed-point representation with the format < M x̂, Lx̂ >
and x ∈ F for the floating-point representation. X̄ ∈ Fn is a vector of n floating-point
numbers and X̂ ∈ ℵn a vector of n fixed-point numbers.

5.1 Fixed-Point Arithmetic Error

This subsection defines two important properties about errors made in fixed-point addition
and multiplication which are used to compute affine transformations in a NN (substraction
and division are useless in our context.) We start by introducing the propositions and then
the proofs. Proposition 1 defines the error of the fixed-point addition when we add two
fixed-point numbers and Proposition 2 defines the error due to the multiplication of two
fixed-point numbers.

Proposition 1. Let x̂, ŷ, ẑ ∈ ℵ with a format < M x̂, Lx̂ > (respectively < M ŷ, Lŷ >,
< M ẑ, Lẑ >.) Let x, y, z ∈ F be the floating-point representation of x̂, ŷ, ẑ. Let ϵ⊕ ∈ R
be the error between the fixed-point addition ẑ = x̂ ⊕ ŷ and the floating-point addition
z = x+ y. We have that

ϵ⊕ ≤ 2−Lx̂

+ 2−Lŷ

+ 2−Lẑ

. (7)

Proof. Let us consider ϵx̂, ϵŷ, ϵẑ ∈ R errors of truncation in the fixed-point representation

of x̂, ŷ and ẑ respectively. These ones are bounded by 2−Lx̂
(2−Lŷ

, 2−Lẑ
respectively)

because Lx̂ (Lŷ, Lẑ respectively) is the last correct bit in the fixed-point representation of
x̂ (respectively ŷ, ẑ.)
We have that z = x+y, ẑ = x̂⊕ŷ and ϵ⊕ ≤ ϵx̂+ϵŷ+ϵẑ. Then we obtain ϵẑ ≤ 2−Lx̂

+2−Lŷ

+2−Lẑ

. ■

Proposition 2. Let x̂, ŷ, ẑ ∈ ℵ with a format < M x̂, Lx̂ > (respectively < M ŷ, Lŷ >,<
M ẑ, Lẑ >.) Let x, y, z ∈ F be the floating-point representation of x̂, ŷ, ẑ in such a way
x = x̂ + ϵx̂ (respectively y = ŷ + ϵŷ, z = ẑ + ϵẑ.)
Let ϵ⊗ ∈ R be the resulting error between the fixed-point multiplication ẑ = x̂⊗ ŷ and the
floating-point multiplication z = x× y. We have that

ϵ⊗ ≤ ŷ × 2−Lx̂

+ x̂× 2−Lŷ

+ 2−Lẑ

. (8)

Proof. Let us consider ϵx̂, ϵŷ, ϵẑ ∈ R errors of truncation of x̂, ŷ and ẑ respectively. These

ones are bounded by 2−Lx̂
(2−Lŷ

, 2−Lẑ
respectively) because Lx̂ (Lŷ, Lẑ respectively) is

the last correct bit in the fixed-point representation of x̂ (respectively ŷ, ẑ.)
We have that z = x× y, ẑ = x̂⊗ ŷ. We compute (x̂ + ϵx̂) × (ŷ + ϵŷ) and then we obtain
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ϵ⊗ ≤ ŷ×ϵx̂+ x̂×ϵŷ+ϵx̂×ϵŷ+ϵẑ. We get rid of the second order error ϵx̂×ϵŷ which is negligible
in practice because our method needs to know only the most significant bit of the error
which will be used in Equation (28) in Section 6. Now, the error becomes

ϵ⊗ ≤ ŷ × ϵx̂ + x̂× ϵŷ + ϵẑ. (9)

Finally, we obtain ϵ⊗ ≤ ŷ × 2−Lx̂

+ x̂× 2−Lŷ

+ 2−Lẑ

. ■

5.2 Neural Network Error

Theoretical results about numerical errors inside a fully connected NN using fixed-point
arithmetic are shown in this subsection. There are two types of errors: round off errors
due to the computation of the affine function in Equation (11) and the propagation of the
error of the input vector.

In a NN with fully connected layers [3],∀ b̄ ∈ Fn, ∀W ∈ Fn×m, an output vector ū ∈ Fn

is defined as

f : Fm −→ Fn

X̄ 7−→ ū = f(X̄) = W.X̄ + b̄
(10)

Proposition 3 shows how to bound the numerical errors of Equation (10) using fixed-point
arithmetic.

Fig. 6. Representation of ûk,i the ith neuron of the kth layer.

Proposition 3. Let us consider the affine transformation as defined in Equation (11).
It represents the fixed-point version of Equation (10). This transformation corresponds to
what is computed inside a neuron (see Figure 6.) Let ûk,i ∈ ℵ be the fixed-point representa-
tion of uk,i and θk,i ∈ R the error due to computations and conversions of the floating-point
coefficients to fixed-point coefficients such that

f̂ : ℵn −→ ℵ
X̂k−1 7−→ ûk,i = f̂(X̂k−1).

(11)

where f̂(X̂k−1) =

n−1∑
j=0

(ŵk−1,i,j⊗x̂k−1,j)⊕b̂k−1,i and X̂k−1 = (x̂k−1,0, ..., x̂k−1,n−1)
t, 1 ≤ k ≤ m, 0 ≤ i < n.

Then the resulting error θk,i for each neuron ûk,i of each layer is given by

1 ≤ k < m+1, 0 ≤ i < n, θk,i ≤
n−1∑
j=0

(2M
x̂
k−1,j−Lŵ

k−1,i,j +2M
ŵ
k−1,i,j−Lx̂

k−1,j )+n×2−Lû
k,i +2−Lû

k,i+1. (12)

Proof. The objective is to bound the resulting error for each neuron (Figure 6) of each
layer due to affine transformations by bounding the error of the formula of Equation (11).
We compute first the error of multiplication ŵk−1,i,j ⊗ x̂k−1,j using Proposition 2. Then

we bound the fixed-point sum of multiplications
n−1∑
j=0

(ŵk−1,i,j ⊗ x̂k−1,j) and finally we use
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Proposition 1 to bound the error of addition of
n−1∑
j=0

(ŵk−1,i,j ⊗ x̂k−1,j)⊕ b̂k−1,i.

Let ϵα ∈ R be the error of ŵk−1,i,j ⊗ x̂k−1,j and 2−Lû
k,i the truncation error of the output

ϵα ≤ 2M
x̂
k−1,j−Lŵ

k−1,i,j + 2M
ŵ
k−1,i,j−Lx̂

k−1,j + 2−Lû
k,i . (13)

Now, let us consider ϵβ ∈ R as the error of

n−1∑
j=0

(ŵk−1,i,j⊗ x̂k−1,j). This error is computed

by using the result of Equation (13) such that

ϵβ ≤
n−1∑
j=0

(2−Lŵ
k−1,i,j × 2M

x̂
k−1,j + 2−Lx̂

k−1,j × 2M
ŵ
k−1,i,j ) +

n−2∑
j=0

2−Lû
k,i + 2−Lû

k,i . (14)

Consequently,

ϵβ ≤
n−1∑
j=0

(2M
x̂
k−1,j−Lŵ

k−1,i,j + 2M
ŵ
k−1,i,j−Lx̂

k−1,j ) + n× 2−Lû
k,i . (15)

Finally, let ϵγ ∈ R be the error of
n−1∑
j=0

(ŵk−1,i,j ⊗ x̂k−1,j)⊕ b̂k−1,i. Using Equation (15)

and Proposition 1 we obtain ϵγ ≤ ϵβ + 2−Lû
k,i . Finally,

ϵγ ≤
n−1∑
j=0

(2M
x̂
k−1,j−Lŵ

k−1,i,j + 2M
ŵ
k−1,i,j−Lx̂

k−1,j ) + n× 2−Lû
k,i + 2−Lû

k,i+1. (16)

If we combine Equations (12) and (16), we obtain

θk,i = ϵγ ≤
n−1∑
j=0

(2M
x̂
k−1,j−Lŵ

k−1,i,j + 2M
ŵ
k−1,i,j−Lx̂

k−1,j ) + n× 2−Lû
k,i + 2−Lû

k,i+1. ■ (17)

In this section, we have bounded the affine transformation error θk,i for each neuron
ûk,i of each layer k of the NN in Equation (17), respecting the equivalent floating-point
computations. This resulting error θk,i is used in Section 6 to compute the optimal format
< M û

k,i, L
û
k,i > for each neuron ûk,i.

6 Constraints Generation

In this section, we demonstrate how to generate the linear constraints automatically for a
given NN, in order to optimize the number of significant bits after the binary point Lû

k,i of

the format < M û
k,i, L

û
k,i > corresponding to the output ûk,i. Let us remember that we have

a floating-point NN with m layers and n neurons per layer working at some precision, and
we want to compute a fixed-point NN with the same behavior than the initial floating-
point NN for a given input vector. This new fixed-point NN must respect the threshold
error and the data type T ∈ {8, 16, 32} bits for the C synthesized code. The variables of
the system of constraints are Lû

k,i and Lŵ
k−1,i,j . They correspond respectively to the length

of the fractional part of the output ûk,i and ŵk−1,i,j . We have M û
k,i, M

x̂
k−1,i, M

ŵ
k−1,i,j ∈ Z,

and Lû
k,i, L

x̂
k−1,i, L

ŵ
k−1,i,j ∈ N, for 1 ≤ k < m + 1, and 0 < i, j < n, such that M û

k,i

(respectivelyM x̂
k−1,i, M

ŵ
k−1,i,j) can be negative when the value of the floating-point number

is between −1 and 1. We have also, M ŵ
k−1,i,j (respectively M x̂

0,i the number of bits before
the binary point of the feature layer) which is obtained by computing the ufp defined in

neuron u  ̂. Using Proposition 2, we obtain
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Equation (4) of the corresponding floating-point coefficient. Finally, the value of M û
k,i is

obtained through the fixed-point arithmetic (addition and multiplication) in Section 4. In
Equation (18) of Figure 7 (respectively (19) and (20)), the length M x̂

k,i+Lx̂
k,i (respectively

M û
k,i+Lû

k,i and M ŵ
k,i,j +Lŵ

k,i,j) of the fixed-point number x̂ (respectively û and ŵ) must be
less than or equal to T − 1 to ensure the data type required. We use T − 1 in these three
constraints because we keep one bit for the sign. Equation (21) is about the multiplication.
It asserts that the total number of bits of x̂ and ŵ is not exceeding the data type T − 1.
Equations (22), (23) and (24) assert that the number of significant bits of the fractional
parts cannot be negative. The boundary condition for the neurons of the output layer is
represented in Equation (25). It gives a lower bound for Lû

m,i and then ensures that the
error threshold is satisfied for all the neurons of the output layer.

M x̂
k,i + Lx̂

k,i ≤ T − 1, 0 ≤ k ≤ m, 0 ≤ i < n (18)

M û
k,i + Lû

k,i ≤ T − 1, 1 ≤ k < m+ 1, 0 ≤ i < n (19)

M ŵ
k,i,j + Lŵ

k,i,j ≤ T − 1, 0 ≤ k < m, 0 ≤ i, j < n (20)

M ŵ
k,i,j + Lŵ

k,i,j +M x̂
k,j + Lx̂

k,j ≤ T − 1, 0 ≤ k < m, 0 ≤ i, j < n (21)

Lx̂
k,i ≥ 0, 0 ≤ k ≤ m, 0 ≤ i < n (22)

Lû
k,i ≥ 0, 1 ≤ k < m+ 1, 0 ≤ i < n (23)

Lŵ
k,i,j ≥ 0, 0 ≤ k < m, 0 ≤ i, j < n (24)

Lû
m,i ≥ |ufp(|Threshold|)|, 0 ≤ i < n, m : last layer of NN (25)

∀j : Lû
k,i ≤ Lx̂

k−1,j , 1 ≤ k < m+ 1, 0 ≤ i, j < n (26)

Lx̂
k,i ≤ Lû

k,i, 1 ≤ k < m+ 1, 0 ≤ i < n (27)

Lû
k,i × (ufp(n) + 1) +

n−1∑
j=0

(Lx̂
k−1,j + Lŵ

k−1,i,j) ≥
n−1∑
j=0

(M x̂
k−1,j +M ŵ

k−1,i,j)− ufp(|Threshold|)− 1,

1 ≤ k < m+ 1, 0 ≤ i, j < n (28)

Fig. 7. Constraints generated for the formats optimization of each neuron of the NN.

In Figure 7, Equation (26) represents the constraint where the propagation is done in
a forward way, and Equation (27) represents the constraint where the propagation is done
in a backward way. These constraints bound the length of the fractional parts in the worst
case. The constraint of Equation (26) aims at giving an upper bound of Lû

k,i. It ensures

that Lû
k,i of the output of the neuron i of the layer k is less than (or equal to) all its

inputs Lx̂
k−1,j , 0 ≤ j < n. The constraint of Equation (27) gives an upper bound for Lx̂

k,i

of the input x̂. This constraint ensures that the number of significant bits after the binary
point Lx̂

k,i of the input of the neuron i of the layer k + 1 is equal to (or less than) Lû
k,i of
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the neuron i of the previous layer k. The constraint of Equation (28) in Figure 7 aims at
bounding Lû

k,i of the output of the neuron i for the layer k and Lŵ
k−1,i,j of the coefficients of

matrix Ŵk−1. This constraint corresponds to the error done during the computation of the
affine transformation in Equation (11). The Equation (28) is obtained by the linearization
of Equation (12) of Proposition 3, in other words, we have to compute the ufp of the error.
The ufp of the error, written ufp(θk,i), is computed as follow

Using Equation (17) of Proposition 3, we have

ufp(θk,i) ≤ ufp(

n−1∑
j=0

(2M
x̂
k−1,j−Lŵ

k−1,i,j + 2M
ŵ
k−1,i,j−Lx̂

k−1,j ) + n× 2−Lû
k,i + 2−Lû

k,i+1),

then we obtain

ufp(θk,i) ≤
n−1∑
j=0

(M x̂
k−1,j − Lŵ

k−1,i,j +M ŵ
k−1,i,j − Lx̂

k−1,j)− Lû
k,i × (ufp(n) + 1) + 1.

We notice that ufp(θk,i) ≤ ufp(|Threshold|) ≤ 0 because the error is between 0 and 1.

Finally, Lû
k,i×(ufp(n) + 1) +

n−1∑
j=0

(Lx̂
k−1,j + Lŵ

k−1,i,j) ≥
n−1∑
j=0

(M x̂
k−1,j +M ŵ

k−1,i,j)− ufp(|Threshold|)− 1.■

All the constraints defined in Figure 7 are linear with integer variables. The optimal
solution is found by solving them by linear programming. This solution gives the minimal
number of bits for the fractional part required for each neuron ûk,i of each layer taking
into account the data type T and the error threshold tolerated by the user in one hand,
and on the other hand the minimal number of bits of the fractional part required for each
coefficient ŵk−1,i,j .

7 Implementation

In this section, we present our tool. Our approach which is computing the optimal formats
< M û

k,i, L
û
k,i > for each neuron ûk,i of each layer for a given NN, satisfying an error

threshold between 0 and 1 and a data type T given by the user is evaluated through
this tool.

Our tool is a fixed-point code synthesis tool. It synthesizes a C code for a given NN.
This code contains arithmetic operations and activation functions, which use the fixed-
point arithmetic (integer arithmetic) only. In this article, we present only the ˆReLU and

ˆLinear activation functions (defined in Equation (5) and (6) respectively) but we can also
deal with ˆSigmoid and ˆTanh activation functions in our current implementation. They
are not shown but they are available in our framework. We have chosen to approximate
them through piecewise linear approximation [6] using fixed-point arithmetic. We compute
the corresponding error like in ˆReLU and ˆLinear, then we generate the corresponding
constraints.

A description of our tool is given in Figure 8. It takes a floating-point NN working at
some precision, input vectors and a threshold error chosen by the user. The user also has
the possibility to choose the data type T ∈ {8, 16, 32} bits wanted for the code synthesis.
First, we do a preliminary analysis of the NN through many input vectors in order to
determine the range of the outputs of the neurons for each layer in the worst case. We
compute also the most significant bit of each neuron of each layer in the worst case which
gives us the range of the inputs of the NN [xmin, xmax] for which we certify that our
synthesized code is valid for any input belong this range respecting the required data type
and the threshold. Our tool generates automatically the constraints mentioned in Figure 7
in Section 6 and solves them using the linprog function of scipy library [30] in Python.
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Fig. 8. Our tool features.

Then, the optimal formats for each output neuron, input neuron and coefficients of biases
and matrices of weights are obtained. The optimal formats are used for the conversion
from the floating-point into fixed-point numbers for all the coefficients inside each neuron.
To make an evaluation of the NN in fixed-point arithmetic i.e computing the function in
Equation (11), a fixed-point library is needed. Our library contains mainly the following
functions: fixed-point addition and multiplication, shifts, fixed-point activation functions
ˆTanh, ˆSigmoid, ˆReLU and ˆLinear. The conversion of a fixed-point number to a floating-

point number and the conversion of a floating-point number to a fixed-point number is also
available in this library. The last step consists of the fixed-point code synthesis. We also
synthesize a floating-point code to make a comparison with the fixed-point synthesized
code. We show experiments and results of some NNs in Section 8, and we compare them
with floating-point results in terms of memory space (bits saved) and accuracy.

8 Experiments

In this section, we show some experimental results done on seven trained NNs. Four of
them are interpolators which compute mathematical functions and the three others are
classifiers. These NNs are described in Table 2. The first column gives the name of the
NNs. The second column gives the number of layers and the third one shows the number
of neurons. The number of connections between the neurons is shown in the fourth column
and the number of generated constraints for each NN by our approach is given in the last
column.

The NN hyper in Table 2 is an interpolator network computing the hyperbolic sine of
the point (x, y). It is made of four layers, 48 fully connected neurons (576 connections.)
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Table 2. Description of our experimental NNs.

NN
Desc.

Layers Neurons Connections Constraints

hyper 4 48 576 1980

bumps 2 60 1800 5010

CosFun 4 40 400 1430

Iris 3 33 363 1243

Wine 2 52 1352 3822

Cancer 3 150 7500 21250

AFun 2 200 10000 51700

The number of constraints generated for this NN in order to compute the optimal formats
is 1980. The NN bumps is an interpolator network computing the bump function. The affine
function f(x) = 4 × x + 3

2 is computed by the AFun NN (interpolator) and the function
f(x, y) = x× cos(y) is computed by the CosFun NN (interpolator.) The classifier Iris is a
NN which classifies the Iris plant [27] into three classes: Iris-Setosa, Iris-Versicolour and
Iris-Virginica. It takes four numerical attributes as input (sepal length in cm, sepal width
in cm, petal length in cm and petal width in cm.) The NN Wine is also a classifier. It
classifies wine into three classes [2] through thirteen numerical attributes (alcohol, malic
acid, ash, etc.) The last one is the Cancer NN which classifies the cancer into two categories
(malignant and benign) through thirty numerical attributes [31] as input. These NNs
originally work in IEEE754 single precision. We have transformed them into fixed-point
NNs satisfying a threshold error and a data type T (the size of the fixed-point numbers in
the synthesized code) set by the user. Then we apply the ˆReLU activation function defined
in Equation (5) or the ˆLinear activation function defined in Equation (6) (or ˆSigmoid
and ˆTanh also.)

8.1 Accuracy and Error Threshold

The first part of experiments is for accuracy and error threshold. It concerns Table 3,
Figure 9 and Figure 11 and shows if the concerned NNs satisfy the error threshold set by
the user using the data type T . If the NN is an interpolator, it means that the output of
the mathematical function f has an error less than or equal to the threshold. If the NN
is a classifier, it means that the error of classification of the NN is less than or equal to
(threshold× 100)%.

The symbol × in Table 3 refers to the infeasability of the solution when the linear
programming [30] fails to find a solution or when we cannot satisfy the threshold using the
data type T . The symbol

√
means that our linear solver has found a solution to the system

of constraints (Section 6.) Each line of Table 3 corresponds to a given NN in some precision
and the columns correspond to the multiple values of the error thresholds. For example,
in the first line of the first column, the NN hyper 32 requires a data type T = 32 bits
and satisfies all the values of threshold (till 10−6 ≈ 2−20.) In the fifth column, 2−4 means
that we require at least four significant bits in the fractional part of the worst output of
the last layer of the NNs. The fixed-point NNs bumps 32, AFun 32, CosFun 32, Iris 32
and Cancer 32 fulfill the threshold value 2−10 which corresponds to ten accurate bits in
the fractional part of the worst output. Beyond this value, the linear programming [30]
does not find a solution using a data type on 32 bits for these NNs. Using the data type
T = 16 bits, all the NNs except AFun 16 have an error less than or equal to 2−4 and
ensure the correctness at least of four bits after the binary point of the worst output in
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the last layer. Only the NNs Wine 8 and Cancer 8 can ensure one significant bit after the
binary point using data type on 8 bits. In the other NNs, only the integer part is correct.

The results can vary depending on several parameters: the input vector, the coefficients
of W and b, the activation functions, the error threshold and the data type T . Generally,
when the coefficients are between −1 and 1, the results are more accurate because their
ufp (Equation(4)) are negative and we can go far after the binary point. The infeasability
of the solutions depends also on the size of the data types T , for example if we have a small
data type T and a consequent number of bits before the binary point in the coefficients
(large value of M), we cannot have enough bits after the binary point to satisfy the small
error thresholds.

Figure 9 represents the fixed-point outputs of the interpolator CosFun 32 (lines) and
the floating-point outputs (shape) for multiple inputs. All the fixed-point outputs must
respect the threshold 2−10 (ten significant bits in the fractional part) and must use the
data type T = 32 bits in this case. We can see that the two curves are close. This means
that the new NN (fixed-point) has the same behavior and answer comparing to the original
NN. The result is correct for this NN for any inputs x ∈ [−4, 4] and y ∈ [−4, 4].

Table 3. Comparison between the multiple values of error thresholds set by the user and our tool
experimental errors using data types on 32, 16 and 8 bits for the fixed-point synthesized code.

Data Types

NN

Threshold

100 = 20 0.5 =
2−1

10−1 ≈
2−4

10−2 ≈
2−7

10−3 ≈
2−10

10−4 ≈
2−14

10−5 ≈
2−17

10−6 ≈
2−20

32 bits

hyper 32
√ √ √ √ √ √ √ √

bumps 32
√ √ √ √ √

× × ×
AFun 32

√ √ √ √ √
× × ×

CosFun 32
√ √ √ √ √

× × ×
Iris 32

√ √ √ √ √
× × ×

Wine 32
√ √ √ √ √ √

× ×
Cancer 32

√ √ √ √ √
× × ×

16 bits

hyper 16
√ √ √

× × × × ×
bumps 16

√ √ √
× × × × ×

AFun 16
√ √

× × × × × ×
CosFun 16

√ √ √
× × × × ×

Iris 16
√ √ √

× × × × ×
Wine 16

√ √ √
× × × × ×

Cancer 16
√ √ √

× × × × ×

8 bits

hyper 8 × × × × × × × ×
bumps 8

√
× × × × × × ×

AFun 8 × × × × × × × ×
CosFun 8 × × × × × × × ×
Iris 8

√
× × × × × × ×

Wine 8
√ √

× × × × × ×
Cancer 8

√ √
× × × × × ×

Figure 11 shows the results of the fixed-point classifications for the NNs Iris 32 (right)
and Wine 32 (left) using a data type T = 32 bits and a threshold value 2−7 for multiple
input vectors (= 8). For example, the output corresponding to the input vectors 1 and 2
of the Iris 32 NN is Iris-Versicolour, for the input vectors 3, 5 and 6 Iris-Virginica and
Iris-Setosa for the others. The results are interpreted in the same way for the Wine 32
NN. We notice that we have obtained the same classifications with the floating-point NNs
using the same input vectors, so our new NN has the same behavior as the initial NN.
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Fig. 9. Fixed-point outputs vs
floating-point outputs of the CosFun 32
NN for multiple inputs using a data type
on 32 bits and an error threshold ≈ 2−10.

Fig. 10. Number of bits of each neuron of the
CosFun 32 NN after formats optimization for a

threshold ≈ 2−10.

Fig. 11. Results of the fixed-point classification of the NNs Iris 32 (right) and Wine 32 (left) respecting
the threshold value 2−7 and the data type T = 32 bits.

8.2 Bits/Bytes Saved

The second part of experiments concerns Figure 10, Figure 12 and Table 4 and aims at
showing that our approach saves bytes/bits through the computation of the optimal format
for each neuron done in Section 6. At the beginning, all the neurons are represented in
T ∈ {8, 16, 32} bits and after the optimization step, we reduce consequently the number
of bits for each neuron while respecting the threshold set by the user.

Figure 10 shows the total number of bits of all the neurons for each layer of the
CosFun 32 NN after the optimization of the formats < M, L > in order to satisfy the
threshold 2−10 and the data type T = 32 bits for the fixed-point synthesized code in this
case. In the synthesized C code, the data types will not change through this optimization
because they are defined at the beginning of the program statically, but it is interesting
to use these results in FPGA [4,11] for example. We notice that the size of all the neurons
was 32 bits at the beginning and after our tool optimization (resolving the constraints of
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Section 6), we need only 18 bits for the neurons of the output layer to satisfy the error
threshold. We win 14 bits which represents a gain of 43.75%.

Fig. 12. Initial vs saved bytes for our experimental NNs on 32 bits respecting the threshold 2−7.

In the initial NNs, all the neurons were represented on 32 bits (4 bytes) but after the
formats optimization (Section 6) through linear programming [30], we save many bytes
for each neuron of each layer and the size of the NN becomes considerably small. It is
useful in the case when we use FPGA [4,11], for example. Figure 12 shows the size of each
NN (bytes) before and after optimization, and the Table 4 demonstrates the percentage
of gain for each NN. For example, in the NN Cancer 32, we reduce for 18× the number
of bytes comparing to the initial NN (we earn up 94, 66%.) Our approach saves bits and
takes in consideration the threshold error set by the user (in this example it is 2−7.)

Table 4. Gain of bytes of the experimental NNs after formats optimization for a threshold ≈ 2−7 and a
data type T = 32 bits.

NN
Desc.

Size before opt. Size after opt. Bytes saved Gain (%)

hyper 32 192 84 108 56, 25

bumps 32 240 183 57 23.75

CosFun 32 160 59 101 63.12

Iris 32 132 47 85 64.39

Wine 32 208 77 131 62.98

Cancer 32 600 32 568 94.66

8.3 Conclusion

These experimental results show the efficiency of our approach in terms of accuracy and
bits saved (memory space.) As we can see in Figure 2, the synthesized code contains only
assignments, elementary operations (+, ×, >>, <<) and conditions used in the activation
functions. The execution time corresponding to the synthesized code for the experimental
NNs of the Table 2 is in only few milliseconds (ms).
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9 Related Work

Recently, a new line of research has emerged on compressing machine learning models [15,
16], using other arithmetics in order to run NNs on devices with small memories, integer
CPUs [11,12] and optimizing data types and computations error [14,18].

In this section, we give an overview of some recent work. We present the multiple
tools and frameworks (SEEDOT [11], DEEPSZ [15], Condensa [16]) more or less related
to our approach. There is no approach comparable with our method because none of
them respects a threshold error set by the user in order to synthesize a C code using
only integers for a given trained NN without modifying its behavior. We can cite also
FxpNet [7] and Fix-Net [9] which train neural networks using fixed point arithmetic (low
bit-width arithmetic) in both forward pass and backward pass. The articles [9, 19] are
about quantization which aims to reduce the complexity of DNNs and facilitate potential
deployment on embedded hardware. There is also another line of research who has emerged
recently on understanding safety and robustness of NNs [8,10,17,25,28]. We can mention
the frameworks Sherlock [8], AI2 [10], DeepPoly [25] and NNV [28].

The SEEDOT framework [11] synthesizes a fixed-point code for machine learning (ML)
inference algorithms that can run on constrained hardware. This tool presents a compiling
strategy that reduces the search space for some key parameters , especially scale parameters
for the fixed-point numbers representation used in the synthesized fixed-point code. Some
operations are implemented (multiplication, addition, exponential, argmax, etc.) in this
approach. Both of SEEDOT and our tool generate fixed-point code, but our tool fullfills
a threshold and a data type required by the user. SEEDOT finds a scale for the fixed-
point representation number and our tool solves linear constraints for finding the optimal
format for each neuron. The main goal of this compiler is the optimization of the fixed-
point arithmetic numbers and operations for an FPGA and micro-controllers.

The key idea of [14] is to reduce the sizes of data types used to compute inside each
neuron of the network (one type per neuron) working in IEEE754 floating-point arithmetic
[13, 21]. The new NN with smaller data types behaves almost like the original NN with a
percentage error tolerated. This approach generates constraints and does a forward and
a backward analysis to bound each data type. Our tool has a common step with this
approach, which is the generation of constraints for finding the optimal format for each
neuron (fixed-point arithmetic) for us and the optimal size (floating-point arithmetic) for
each neuron for this method.

In [12], a new data type called Float-Fix is proposed. This new data type is a trade-off
between the fixed-point arithmetic [4,20,23] and the floating-point arithmetic [13,21]. This
approach analyzes the data distribution and data precision in NNs then applies this new
data type in order to fulfill the requirements. The elementary operations are designed for
Float-Fix data type and tested in the hardware. The common step with our approach is
the analysis of the NN and the range of its output in order to find the optimal format
using the fixed-point arithmetic for us and the the optimal precision for this method using
Float-Fix data type. Our approach takes a threshold error not to exceed but this approach
does not.

DEEPSZ [15] is a lossy compression framework. It compresses sparse weights in deep
NNs using the floating-point arithmetic. DEEPSZ involves four key steps: network pruning,
error bound assessment, optimization for error bound configuration and compressed model
generation. A threshold is set for each fully connected layer, then the weights of this layer
are pruned. Every weight below this threshold is removed. This framework determines the
best-fit error bound for each layer in the network, maximizing the overall compression
ratio with user acceptable loss of inference accuracy.
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The idea presented in [16] is about using weight pruning and quantization for the
compression of deep NNs [26]. The model size and the inference time are reduced without
appreciable loss in accuracy. The tool introduced is Condensa where the reducing memory
footprint is by zeroing out individual weights and reducing inference latency is by pruning
2-D blocks of non-zero weights for a language translation network (Transformer).

A framework for semi-automatic floating-point error analysis for the inference phase of
deep learning is presented in [18]. It transforms a NN into a C++ code in order to analyze
the network need for precision. The affine and interval arithmetics are used in order to
compute the relative and absolute errors bounds for deep NN [26]. This article gives some
theoretical results which are shown for bounding and interpreting the impact of rounding
errors due to the precision choice for inference in generic deep NN [26].

10 Conclusion & Future Work

In this article, we introduced a new approach to synthesize a fixed-point code for NNs using
the fixed-point arithmetic and to tune the formats of the computations and conversions
done inside the neurons of the network. This method ensures that the new fixed-point NN
still answers correctly compared to the original network based on IEEE754 floating-point
arithmetic [13]. This approach ensures the non overflow (sufficient bits for the integer
part) of the fixed-point numbers in one hand and the other hand, it respects the threshold
required by the user (sufficient bits in the fractional part.) It takes in consideration the
propagation of the round off errors and the error of inputs through a set of linear constraints
among integers, which can be solved by linear programming [30]. Experimental results
show the efficiency of our approach in terms of accuracy, errors of computations and bits
saved. The limit of the current implementation is the large number of constraints. We use
linprog in Python [30] to solve them but this method does not support a high number of
constraints, this is why our experimental NNs are small.

A first perspective is about using another solver to solve our constraints (Z3 for example
[22]) which deals with a large number of constraints. A second perspective is to make a
comparison study between Z3 [22] and linprog [30] in term of time execution and memory
consumption. A third perspective is to test our method on larger, real-size industrial neural
networks. We believe that our method will scale up as long as the linear programming solver
will scale up. If this is not enough, a solution would be to assign the same format to a group
of neurons in order to reduce the number of equations and variables in the constraints
system. A last perspective is to consider the other NN architectures like convolutional
NNs [1, 3, 10].
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20. Lopez, B.: Implémentation optimale de filtres linéaires en arithmétique virgule fixe. (Optimal imple-
mentation of linear filters in fixed-point arithmetic). Ph.D. thesis, Pierre and Marie Curie University,
Paris, France (2014)

21. Martel, M.: Floating-point format inference in mixed-precision. In: NASA Formal Methods - 9th
International Symposium, NFM. vol. 10227, pp. 230–246 (2017)

22. de Moura, L.M., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R., Rehof, J. (eds.)
Tools and Algorithms for the Construction and Analysis of Systems, 14th International Conference,
TACAS 2008, Held as Part of the Joint European Conferences on Theory and Practice of Software,
ETAPS 2008, Budapest, Hungary, March 29-April 6, 2008. Proceedings. Lecture Notes in Computer
Science, vol. 4963, pp. 337–340. Springer (2008)

23. Najahi, M.A.: Synthesis of certified programs in fixed-point arithmetic, and its application to linear
algebra basic blocks. Ph.D. thesis, University of Perpignan, France (2014)

24. Sharma, S., Sharma, S.: Activation functions in neural networks. Towards Data Science 6(12), 310–316
(2017)
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