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ABSTRACT 
 
Autonomous-Mobility-on-Demand (AMoD) systems can revolutionize urban transportation by 

providing mobility as a service without car ownership. However, optimizing the performance of 

AMoD systems presents a challenge due to competing objectives of reducing customer wait 

times and increasing system utilization while minimizing empty miles. To address this challenge, 

this study compares the performance of max-policy sharing agents and independent learners in 

an AMoD system using reinforcement learning. The results demonstrate the advantages of the 

max-policy sharing approach in improving Quality of Service (QoS) indicators such as 

completed orders, empty miles, lost customers due to competition, and out-of-charge events. The 

study identifies the importance of striking a balance between competition and cooperation 

among individual autonomous vehicles and tuning the frequency of policy sharing to avoid 

suboptimal policies. The findings suggest that the max-policy sharing approach has the 

potential to accelerate learning in multi-agent reinforcement learning systems, particularly 

under conditions of low exploration.  
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1. INTRODUCTION 
 

Autonomous Mobility on Demand (AMoD) systems have garnered significant attention in recent 

years, as they present a promising solution for improving urban transportation efficiency and 

reducing environmental impact. The optimal fleet size for an Autonomous Mobility on Demand 

(AMoD) system is a crucial factor in its overall efficiency and profitability. The fleet size needs 

to be big enough to meet the expected demand for the service, but not so large that it results in 

idle vehicles and unnecessary costs.  In AMoD system, travelers can be picked up at any time and 

location by AVs and transported to where they need to go without owning a car, they would 

purchase mobility as a service. The performance of Autonomous Mobility on Demand (AMoD) 

systems is significantly influenced by the contradictory objectives of reducing customer wait 

times and increasing system utilization while minimizing empty miles. These conflicting goals 

can lead to competing and cooperating behavior among individual autonomous vehicles (AVs). 

In an effort to reduce wait times, AVs may adopt a competitive approach, aiming to be closer to 

areas with high expected demand, and thus positioning themselves to quickly respond to 

incoming requests. This competition, however, can result in an oversupply of vehicles, leading to 
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higher capital expenditures, lower utilization rates, and increased empty miles as AVs roam in 

search of passengers. Conversely, promoting system utilization and reducing empty miles 

requires a more cooperative behavior among individual AVs, with an emphasis on optimizing 

fleet distribution and rebalancing vehicles based on demand patterns. While this cooperation can 

lead to better overall system efficiency, it might also result in longer wait times for customers as 

fewer vehicles are immediately available in high-demand areas. Boosting the right balance 

between these competing priorities is critical for optimizing AMoD performance, ensuring a high 

level of service for users and efficient use of resources. 
 

Multi-agent reinforcement learning (MARL) offers a framework for addressing this complex 

problem by enabling AVs to learn to balance between competition and cooperation and adapt 

their behavior in a dynamic environment. The problem is formulated as a fleet of autonomous 

vehicles serves passenger demands by optimizing customer wait times, system utilization, and 

minimizing empty miles. The key challenge is to strike the right balance between competition 

and cooperation among individual AVs to achieve optimal AMoD performance. The agents a 

state space defined by location, time, battery level, and bidding value. Agents can perform four 

actions: take order, recharge, bid, and no operation. They must decide when to negotiate with 

nearby agents for orders, with the lowest bidder (shortest distance) winning the order. 

 

2. BACKGROUND 
 

As our research contributes to both the Autonomous Mobility on Demand (AMoD) literature and 

the Multi-Agent Reinforcement Learning (MARL) community, this section is divided into two 

parts to highlight the unique contributions to each area of study. 

 

2.1. Multi-Agent Reinforcement Learning (MARL) 
 

According to the learning architecture [1], MARL can be categorized into the following subtypes. 

 
2.1.1. Centralized training centralized execution (CTCE) 
 

It models a joint policy that maps observations to individual actions under a set of distributions. 

With the CTCE paradigm, multi-agent problems can be directly addressed with single-agent 

methods such as actor-critics [2] or policy gradient algorithms [3]. However, by increasing the 

number of agents, state-action spaces grow exponentially. Individual policies for each agent can 

be formulated to overcome the so-called curse of dimensionality. 

 
2.1.2. Distributed Training Decentralized Execution (DTDE)  

 

Where each agent has an assigned policy which maps local observations to individual actions. 

There is no sharing of information among agents, so each agent learns independently. Since 

agents lack access to the knowledge of others and do not perceive joint actions, the DTDE 

paradigm has the fundamental flaw that the environment appears non-stationary from their 

perspective.  
 

Independent Learners are agents that learn their own policies separately without explicitly 

considering the presence of other agents. Each agent is trained using its own local observations 

and rewards, and they don't share information with each other during the learning process. 

 
2.1.3. Centralized Training Decentralized Execution (CTDE)  
 

Where each agent holds an individual policy that maps local observations to a distribution of 

individual actions. Agents are provided with additional information during training, which is 

discarded during testing. The CTDE paradigm presents the state-of-the-art practice for learning 
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with multiple agents [4-5]. Sharing mutual information can ease the training process and increase 

learning speed when compared against independently trained agents. When all agents have access 

to additional information during training, they can avoid non-stationarity.  
 

According to [6], the authors have classified the CTDE further into a joint-action learners (Fully 

Observable Critic, Value Function Factorization), and individual-action learners (Consensus 

algorithms and Learn to Communicate). While the Independent Learners in DTDE involve 

distributed training and decentralized execution, with each agent learning separately. the Fully 

Observable Critic and Value Function Factorization techniques involve centralized training with 

a shared critic, but they differ in how they represent the joint value function. Fully Observable 

Critic directly learns a joint action-value function, while Value Function Factorization 

decomposes it into simpler components. Both approaches use decentralized execution, where 

agents act independently based on their learned policies. Consensus algorithms focus on reaching 

agreements among agents, while Learn to Communicate approaches emphasize learning 

communication strategies for better coordination. Both can involve centralized or distributed 

training, depending on the specific implementation, and both use decentralized execution. 
 

In cooperative multi-agent deep reinforcement learning, multiple agents work together to solve a 

common problem or achieve a shared goal. A consensus approach in this context refers to 

methods and algorithms used to achieve agreement among agents on certain aspects of their 

learning or decision-making process. This agreement helps the agents to learn more effectively 

and efficiently, as they can share information, coordinate actions, and make better decisions 

based on the collective knowledge and experience of the group.  
 

Differentiable Inter-Agent Learning (DIAL) is an end-to-end learning approach proposed in [7], 

which means that the agents' actions and communication strategies are learned simultaneously. 

The authors show that DIAL can effectively train agents to cooperate and communicate in 

complex tasks, outperforming traditional reinforcement learning methods and other multi-agent 

learning techniques. However, it is not clear how the DIAL would adapt to dynamic 

environments where agents need to update their strategies and communication as the environment 

changes.  
 

In their study, Arshavskaya et al. [8] examine a scenario in which each agent gathers local 

observations, applies its individual policy, and receives a unique reward. They introduce a tabular 

policy optimization consensus algorithm that utilizes Boltzmann's law (resembling the soft-max 

function) to address this challenge. The agreement algorithm assumes that an agent can share its 

local reward, a count of observations, and the action taken for each observation with nearby 

agents. The algorithm aims to maximize the weighted average of local rewards. In doing so, the 

researchers guarantee that each agent's learning is on par with what a centralized learner could 

achieve, ultimately reaching a local optimum. 

 

2.2. MARL for Autonomous Mobility on Demand 
 

Enders et al. [9] presented a technique to tackle the autonomous mobility on demand (AMoD) 

challenge by integrating a multi-agent deep reinforcement learning (DRL) algorithm for making 

proactive request assignment and rejection decisions. The main goal is to enhance the operating 

profit of an AMoD operator. The key difference between our approach and this study is their 

application of CTDE with value decomposition, where agents gradually learn advantageous joint 

actions over time. On the other hand, our strategy recommends independent learners possessing a 

communication channel to benefit from the contributions of other agents. This is expected to 

result in an increased learning rate and a broader exploration of experience areas. 
 

In [10] study, the authors developed a real-time control policy based on deep reinforcement 

learning to operate an AMoD fleet of vehicles and determine ride pricing. The real-time control 
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policy simultaneously makes decisions for: 1) vehicle routing to serve passenger demand and 

rebalance empty vehicles, and 2) ride pricing to adjust potential demand, stabilizing the network 

and maximizing profits. The problem is defined as a multi-agent setup, where each part of the 

transportation network node represents a single agent managing its vehicles and orders, aiming to 

optimize the joint action in a CTDE structure. The authors compared their results with a single-

agent DTDE approach and observed significant improvement in the multi-agent model. 
 

Additionally, certain studies concentrate on addressing specific issues within the AMoD domain. 

Fluri et al. [11] discusess the rebalancing problem of AMoD fleet. They derive a cascade-based 

reinforcement learning model that captures the crucial spatio-temporal features of the rebalancing 

problem and defines a state-action space, ensuring relatively fast and stable convergence.  
 

In [12] the paper explores a strategic charging pricing scheme for charging station operators 

(CSOs) using a non-cooperative Stackelberg game framework. The proposed framework 

formulates the AMoD operator's responsive actions (order-serving, repositioning, and charging) 

as a multi-commodity network flow model to tackle an energy-aware traffic flow problem. 

Concurrently, a soft actor-critic-based multi-agent deep reinforcement learning algorithm is 

developed to address the proposed equilibrium framework, considering privacy-preservation 

constraints among CSOs. 
 

Reference [13] considers the problem of uncertainty in the EV rebalancing and charging.It 

develops a constrained multi-agent reinforcement learning (MARL) framework. Then introduces 

a robust and constrained MARL algorithm (ROCOMA) that trains an EV rebalancing policy to 

balance the supply-demand ratio and charging utilization rate across the entire city under state 

transition uncertainty. 

 

3. PROBLEM FORMULATION  
 

We model the environment as a Markov Decision Process (MDP) for each agent. The state space 

is defined by a tuple (l: location, t:time, e:battery level, b:bidding value), where location 

represents the agent's current position, time is the current time step, battery level indicates the 

remaining energy of the agent, and bidding value is the agent's current bid for a task. The action 

space consists of four actions: take order, recharge, bid, and no operation. 
 

Agents need to decide when to negotiate with other agents in the vicinity to complete announced 

orders. The negotiation process involves each agent bidding based on the distance from their 

current location to the order's location. The agent with the lowest bid (i.e., the shortest distance) 

is awarded the order.  The reward associated with each action is contingent on the agent's bidding 

and positional status. If the agent has placed a bid and the order remains unclaimed, or if the 

agent's distance from the order location is less than the announced bid, the agent receives a 

reward of +1 for taking the order and -1 for taking the order in other cases. The bid value is 

updated to 1 exclusively when the agent places a bid for a particular order. To expedite the 

negotiation process, the agent is not allowed to re-bid for the same order. The agent experiences a 

penalty of -1 for each time step during its operation. Additionally, the total reward is adjusted 

based on the agent's current battery level (e), a process referred to as depreciation. This 

depreciation factor reflects how the reward value decreases in relation to the current battery level. 

 

R(s, a = take-order) =   

R(s, a = recharge) = Rno-op   = -1 

R(s, a = bid)  =  
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R(s,a) = R(s,a) -  

 

3.1. Multi-Agent Formulation 
 

For N = {1, … , N}, denotes the set of interacting agents, the Markov decision process is 

formalized by the tuple for each i ∈ N: <Si , Ai , Pi, Ri , γ>,  where Si , Ai are the state and action 

space, respectively, Pi ∶ Si × Ai → Pi (Si) is the transition function describing the probability of a 

state transition, Ri ∶ Si × Ai  × Si → ℝ is the reward function providing an immediate feedback to 

the agent, and γ ∈ [0, 1) describes the discount factor.  The agent’s goal is to act in such a way as 

to maximize the expected performance on a long-term perspective with regard to an unknown 

transition function Pi. A policy π is a distribution over actions given states, 

πi (a,s) = Pi  [Ai
t =a , Si

t = s ] 

 

In a similar manner, the action-value function Q ∶ Si × Ai → ℝ describes the utility of being in 

state s, performing action a, and following the policy i  thereafter, that is;  

Q  (s, a) =  

 
Epsilon-greedy (ϵ-greedy) is a widely-used Q-learning approach to balance exploration and 

exploitation. It selects the optimal action with a probability of (1-epsilon) and a random action 

with probability epsilon. A higher epsilon promotes exploration, while a lower epsilon favors 

exploitation. 
 

We have used epsilon-greedy exploration, i.e. an agent selects the action with the highest 

estimated Q-value with a probability of (1-ϵ), while performing an exploratory move probability 

of ϵ. 

 (1) 

 
During the initial phase of learning, it is often useful to set a higher epsilon value to encourage 

exploration and learn about the environment. As the agent gains more knowledge, the epsilon 

value can be gradually decreased to favor exploitation and improve performance.  

 

From the theorem, we can find an optimal policy immediately by maximizing  (s, a) over all 

actions. 
 

The consensus approaches in multi-agent reinforcement learning can vary widely depending on 

the specific algorithm, communication method, and problem domain. Agents can exchange 

information about their observations, actions, and rewards to help each other learn more quickly 

and accurately. This can involve sharing entire Q-value tables, gradients, or other learning-related 

data. The epsilon definition used in epsilon-greedy as an exploration-exploitation indicator can 

also be repurposed as a sharing rate in the max-policy sharing approach of multi-agent 

reinforcement learning. A higher epsilon value corresponds to a higher willingness to explore 

new actions and thus, a lower willingness to share Q-value tables with other agents. Conversely, 

a lower epsilon value corresponds to a greater emphasis on exploiting the current knowledge and 

thus, a higher willingness to share Q-value tables with other agents. 
 

In the max-policy sharing approach, after enough exploration, the agents share their Q-value 

tables with each other. The sharing mechanism can be implemented in different ways, such as 

averaging, max-pooling, or a custom function that combines the information from the Q-value 

tables. By combining the exploration-exploitation indicator in epsilon-greedy with the sharing 
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rate in max-policy sharing, agents can achieve a balance between cooperation and competition 

among agents, leading to improved learning outcomes in multi-agent reinforcement learning. The 

sharing rate can be adjusted by varying the epsilon value to control the degree of exploration and 

exploitation in the learning process. 

 

Definition: In the Distributed training decentralized execution (DTDE), The Consensus Learner 

is voting to the best policy as;   

 (s, a) =  
 

Where M calculate the frequency of selecting action a for a state s by all optimal policies. 

Therefore, the optimal policy in (1) will be calculated as; 
 

 
 

By using max-pooling, the agents can benefit from the best Q-value estimates learned by any 

agent in the group, potentially accelerating their learning process. However, it is essential to 

balance the frequency of sharing and exploration to avoid premature convergence to suboptimal 

policies. 

 

4. RESULTS AND DISCUSSION 
 

The main objectives of our experiments are to verify the following hypotheses: 1) The 

recommended max-policy sharing strategy for consensus learners can speed up policy learning in 

comparison to independent techniques. 2) Homogeneous teams benefit from exchanging learned 

policies rather than augmenting their numbers throughout the training process. Furthermore, we 

aim to explore the effects of max-policy sharing MARL on AMoD indicators. As rewards 

increase, we expect a rise in the positive aspects of the reward function, such as completed orders 

and rebalancing, while observing a decline in negative aspects like empty miles and recharging. 
 

A range of experiments were carried out to compare max-policy consensus learners with 

independent learners. These experiments were split into two groups: the first group focused on 

analyzing the performance of MARL agents, while the second group discussed the results from 

an AMoD perspective. 

 

4.1. Mutl-Agent Reinforcement Learning Results 
 

In this series of experiments, the average reward value per episode for agents is presented during 

the training process. Consensus learners undergo training with 50 orders, each lasting for 4 

timesteps, while independent learners are trained with 100 orders, also lasting for 4 timesteps. 
 

The experimental results in Figure 1 demonstrate the advantages of employing the max-policy 

sharing approach in multi-agent reinforcement learning systems under conditions of low 

exploration. When comparing the performance of independent learners with max-policy sharing 

learners, we observed that the latter achieved superior rewards in fewer episodes, indicating a 

more efficient learning process. The improved performance of max-policy sharing learners can be 

attributed to the strategic timing of initiating the policy sharing mechanism. By starting policy 

sharing only when the exploration rate (epsilon) is low, we ensure that agents have already 

undergone substantial learning and refined their policies to a point where they are more likely to 

produce valuable information for their peers. Consequently, the shared policies reflect higher-

quality action choices, which, in turn, enable the receiving agents to improve their performance 

more effectively.  
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Figure 1 Comparison of average rewards between Max-policy sharing learners and independent learners, 

illustrating the impact of epsilon  (ϵ) value on sharing rate and exploration-exploitation balance. A higher ϵ 

value leads to lower sharing rate and higher exploration, while a lower epsilon value results in higher 

sharing rate and higher exploitation. 

 

 
 

Figure 2 Comparison of the learning stage between independent learners on the same task, as the 

number of learners is increased. The learning stage does not further improve as each independent 

learner learns separately and increasing their number does not result in any collective learning. 

 
 

Moreover, our empirical results in Figure 2 show that independent learners do not benefit from an 

increased number of agents, as the average rewards remain similar for groups of 2, 10, and 50 

agents. This observation suggests that simply adding more agents to the learning process does not 

lead to better performance. In contrast, the max-policy sharing approach allows agents to 

leverage the collective knowledge of their peers, leading to more efficient learning and improved 

overall performance. The reduced exploration rate also plays a crucial role in the success of the 
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max-policy sharing approach. Lower epsilon values indicate that agents have already conducted 

extensive exploration of the environment and are thus more focused on exploiting their acquired 

knowledge. In this context, sharing policies can lead to more informed action selection, as the 

agents are primarily voting on the most promising actions learned by their peers.  

 

 
 

Figure 3 Action frequency distribution of Max-policy sharing learners during learning 

 

Figure 3 illustrates the frequency of action selection throughout the learning process. As 

anticipated, max-policy sharing agents excel over independent learners in terms of the frequency 

of take order and bid actions, mainly due to the accelerated learning achieved through the sharing 

of policies. Furthermore, an interesting trend is observed in the recharge action frequency for 

both types of agents. At the beginning of the learning process, the frequency of the recharge 

action increases, indicating that the agents are moving and consuming battery while exploring the 

environment and learning the optimal policy. As learning progresses, the frequency of the 

recharge action starts to decrease slowly, which shows that the agents are adapting their strategies 

to balance between completing orders while maintaining battery levels.  The final figure presents 

the decreasing frequency of the no operation action, which suggests a more productive and 

efficient team of agents. Thus, higher utilization. As agents learn to make more informed 

decisions and take appropriate actions, resulting in a more active and coordinated team. 

 

4.2. MARL for AMoD Results 
 

In this section, we have emphasized the influence of trained agents on the indicators of AMoD, 

specifically the mean number of orders completed per episode, the total number of miles traveled 

without passengers, and the utilization rate measured by the frequency of out-of-charged events. 
 

Figure 4 illustrates that, as a result of the increased reward value primarily driven by the take 

order action, max-policy sharing learners outperform independent learners in terms of the number 

of completed orders during the learning process. This outcome can be attributed to sharing 

learners exploring a larger area of the search space and exchanging their findings, which, in turn, 

enhances the overall service quality. 
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Figure 4 The average productivity, measured by the number of completed orders per agent, increases with 

no instances of ignored orders, for both max-policy sharing and independent learners. 

 
 

Furthermore, in terms of empty miles, both types of learners demonstrate an improvement in 

reducing these miles throughout the learning process (Figure 5). This reduction is a direct 

consequence of decreasing the frequency of recharge and no operation actions, as agents learn to 

optimize their decisions and focus more on completing orders. 

 

 
 

Figure 5 The average number of empty miles generated per agent decreases over the time, demonstrating 

improved agent balance and productivity, as well as zero instances of empty mile generation for both max-

policy sharing and independent learners. 

 
In Figure 6, a substantial decrease in the number of lost customers due to competition is observed 

for both categories of learners, indicating a noteworthy shift towards cooperative behavior among 

the agents. Moreover, the results shown in Figure 7 demonstrate a significant decline in the 
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occurrence of out-of-charge events, thereby underscoring a more harmonious team dynamic. This 

outcome serves to emphasize that the agents are more effectively distributed in terms of 

workload, with an equitable balance being achieved across the team, such that no individual 

agent is overburdened or underutilized. Such findings hold profound implications for the design 

and implementation of efficient and reliable autonomous mobility on demand (AMoD) systems, 

as they suggest that maximizing cooperation among agents and ensuring equitable workload 

distribution can lead to a considerable reduction in lost customers and out-of-charge events, 

resulting in improved Quality of Service (QoS) indicators.  

 

 
 

Figure 6 The average number of lost-order events per agent decreases over time, resulting in 

higher productivity and ignored lost customers. 

 

 
Figure 7 The average number of out-of-charge events per agent decreases over time, indicating 

improved agent balance and zero instances of agents running out of charge. 
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It is vital to acknowledge that the max-policy sharing approach's effectiveness relies on several 

factors such as the problem domain, environment, and sharing rate. Striking a balance between 

exploration and sharing during the learning process, as well as fine-tuning the frequency of policy 

sharing, is crucial to prevent convergence to suboptimal policies. 
 

The scalability of the max-policy sharing approach also warrants discussion. Our study 

demonstrated its superiority over independent learning with a small number of agents; however, 

the performance of this approach with a larger number of agents and increased complexity 

remains uncertain. We utilized a simple communication and voting mechanism, where agents 

share their policies and choose the most popular action for each state. Nevertheless, more 

sophisticated communication and voting mechanisms might better harness the collective 

intelligence of the agents, resulting in improved performance. 

 

5. CONCLUSION 
 

In this study, we compared the effectiveness of max-policy sharing agents and independent 

learners in an Autonomous Mobility on Demand (AMoD) system using reinforcement learning. 

Our results showed that the max-policy sharing approach outperformed independent learning in 

several Quality of Service (QoS) indicators, including completed orders, empty miles, lost 

customers due to competition, and out-of-charge events. 

 

However, this study raises a broader question about the benefits of Multi-Agent Systems (MAS) 

versus single agents, which requires further investigation. Specifically, we observed that 

independent learners do not benefit from an increased number of agents empirically, indicating 

that adding more agents to the learning process does not necessarily improve performance. In 

contrast, the max-policy sharing approach allows agents to learn faster by sharing policies and 

leveraging the most common action choices among their peers.  
 

Potential future research directions include exploring weighted voting mechanisms that prioritize 

policies of higher performing agents or mechanisms that dynamically adjust the sharing rate 

based on agent performance. Moreover, examining the impact of the size and structure of the 

communication network on the max-policy sharing approach's performance could provide 

valuable insights. 
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