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ABSTRACT 
 
Recent years have witnessed the dramatic popularity of online music streaming and the use of 

headphones like AirPods, which millions of people use daily [1]. Melodic EQ was inspired by 

these users to create the best audio listening experience for listeners with various preferences 

[2]. Melodic EQ is a project that creates custom EQs to the user's custom music tastes and 
filters the audio to fit their favorite settings. To achieve this goal, the process starts with a song 

file taken from an existing file, for example, Spotify downloads or mp3s. This file is then 

uploaded to the app. The software sorts the song in a genre detecting Algorithm and assigns a 

genre label to that song. Inside the app, the user will create or select EQs for that genre and 

apply it to their music. The interface is easy to use and the app aims to make everyone's 

preferences achievable and on the fly. That’s why there are presets for each category for users 

who are unfamiliar with equalizers, and custom settings for advanced users to create their 

perfect sound for each genre. 
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1. INTRODUCTION 
 

Audio has been an integral part of human society for millennia [3]. Ranging from conversations 
to music, it is integral to humans as group animals to communicate and express their feelings 

through music [4]. Now more than ever, people have access to all types of audio material. 

Recently there has been a meteoric rise of personal audio devices, headphone use, and 
entertainment viewing, phones, headphones, and other audio broadcasting devices are in every 

corner of society. This trend is also increasingly encouraged by corporations through YouTube, 

streaming services, and music streaming [5]. With so many different individuals around the 
world, everyone has their favorite listening experience in their corner of the audible frequency 

spectrum. EQs are the perfect solution to that problem, Melodic EQ steps this solution up by 

adding modern technology in neural networks and personalized user inputs to give every 

individual their own personalized best audio listening experience. I made Melodic EQ under the  
 

mentorship of Jonathan Thamrun, Product Support Associate at Nodus Technologies, and Yu 

Sun, Associate Professor of Computer Science at Cal Poly Pomona.  

http://airccse.org/cscp.html
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Some techniques and systems that allow users to control EQs intuitively include built-in hardware 

settings for headphones, background software, and manual adjustment of EQ inside individual 

apps. However, these proposals do not possess genre recognition or switching to individual EQs 

for each setting [6]. Their implementations are also limited in scale, for example, limiting to only 
pairing with specific apps, scenarios, or static settings. An example of hardware settings is the 

Sony app. They are limited to only a static EQ pairing with the headphones the user has, and 

cannot be transferred to another pair. The method is simply a standard EQ and doesn't have any 
AI inputs. Then we move on to more advanced software like Nahmic 3, the method/algorithm 

used can already identify between scenarios like video calls and listening to music, however, the 

results often cannot satisfy the need for switching EQs fitting multiple scenarios in a short period 
like a YouTube video or movie scene that has music and dialogue crossed over constantly. 

Melodic EQ is more focused on identifying genre and then switching up the EQ. Some EQs for 

universal apps are also very specific to target quality speakers and headphones which might lead 

to buzzing. With Melodic EQ, we allow users to customize settings for each device they play 
their music on, which makes life a lot more simple as to not overdrive cheap quality speakers that 

cannot fit into the one-size fits all product. 

 
In this paper, I followed the same line of research by Automatic Music Genre Classification 

Based on CRNN [7]. My goal is to integrate an AI algorithm working with equalizer to sort 

music, and I was inspired by their research to use certain features of their research. First, they 
used the GTZAN dataset with a CRNN in Python to make a neural network to predict the music 

genre. I was able to find the same exact dataset on kaggle to also use this dataset to create my 

own algorithm. Secondly, they made the data readable as an image using spectrograms, or images 

of the soundwaves. I too needed to use spectrograms and had to use the PyDub library with the 
Librosa library in python to edit the audio, get channel lengths, and spectrograms. Lastly, they 

used a CRNN as their main priority but we used a Feedforward Neural Network or FNN, which 

they compared to. They were able to get a similar accuracy using a STFN or Short-time Fourier 
transform, a similar feedforward network. 

 

To test the working of the app along with the backend, we used a combination of techniques that 

increases the accuracy of the model. First, to prove the results of my neural network, I visualized 
the train-test split, where 80 percent of the GTZAN dataset was used to train the feedforward 

neural network and 20 percent of the dataset was used to test the accuracy of the algorithm. I 

visualized the dataset by using pandas to graph the accuracy of the neural network. Next I also 
used the keras built in model.summary() to check the accuracy of the algorithm which gives a 

summary of all the components and the accuracy of both the training and the testing of the 

dataset. Finally, in the actual app, I was able to import different genres of songs from hip-hop, 
country, and pop to test the working of the app working with the algorithm. 

 

The rest of the paper is organized as follows: section 2 gives the details on the challenges that we 

met during the experiment and how those challenges influenced the designing of the app. Section 
3 focuses on the details of the methodology of the app, including the backend and frontends 

corresponding to the challenges and goals that we mentioned in the previous sections. Section 4 

presents the relevant details about the experiment we did, the various methods of testing and 
evaluation, and graphs and figures of the data we collected. Section 5 shows related works that 

were an inspiration and parallel studies based of the project. Finally, Section 6 gives the 

conclusion remarks, as well as pointing out the future work of this project.  
 

 

2. CHALLENGES 
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In order to build the project, a few challenges have been identified as follows. 
 

2.1. License to Access Music 
 
My biggest challenge with this app was the ability to access music because we do not have the 

license to access music through streaming services who have dedicated servers to store millions 

of audio files [8]. This is the biggest limitation to the app because it makes it so much harder to 
work with all forms of audio being processed by the user’s phone. Unfortunately, this means the 

app cannot select any song off of an online platform and just plug Melodic EQ’s algorithm onto 

it. The user can only play audio from a file picker for downloaded audio files which severely 

limited the usability of the app. However, if a user paid for a streaming service and downloaded 
mp3s, the user could go to the folder of the app and stream music directly from their downloads 

and we could only rely on this method being an independent 3rd party option. There is no queue 

for the app in beta either so it is just a gimmick without better implementation for more audio 
modifications and playing. 

 

2.2. Using A New Coding Language in Android Studio 
 

My second biggest challenge was using a new coding language in Android Studio by using 

Flutter [9]. Dart is the official Flutter language and I have never used it before in any scenario. 
Dart is very similar to Java but I had little to no experience in it so I had to start everything from 

the ground up. Fortunately, my mentor Jonothan was very adept in it and was able to help me 

code. The hardest integral part of the coding was inheritance, which involved multiple classes 
with object oriented code spanning the entire project. All of the variables, and instances got very 

messy very quickly and I had to spend hours fixing the code. What made this process even more 

challenging was the audio processing using Flutter, which involved multiple independent 

packages made by other programs to develop the logic and the backend. These are not able to be 
explained by the normal methods of coding in Dart, and rely on documentation and custom 

objects and functions. I had to follow my mentor Jonathan very closely so as to not get lost, and 

successfully played audio with equalizer filters when coding the app. 
 

2.3. Never-Ending Grind to Perfect the Algorithm 
 
My last challenge was the never-ending grind to perfect the algorithm and sort the correct genre. 

The music genre detecting algorithm is the most vital part of the audio sorting process, so the 

genre detection needs to acquire the highest test accuracy possible. To make this happen I had to 
adjust and learn multiple ways to sort the preprocessing functions, and the parameters of the 

neural network to get the best results. This meant expanding the libraries by many folds and 

ultimately finding the best ones through repeated testing. However, there was also the problem of 

overfitting or underfitting data [10]. Underfitting means that the model makes accurate, but 
initially incorrect predictions where both train error and val/test error is large. Overfitting means 

that the model makes false predictions because train error is very small but val/test error is large. 

After adjusting the preprocessing, dropout rate, and epoch number I was able to get an optimal 
fitting number.
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3. SOLUTION 
 
Melodic EQ is a custom equalizer that uses an AI algorithm and user input to filter all types of 

audio. The process starts with an independent algorithm that sorts the music into genres without 

any inputs, the genre detected is then sent to the algorithm. The algorithm is a feedforward neural 

network which is a fully connected deep learning network with multiple units. A unit in layer n 
receives input from all units in layer n-1, and sends output to all units in layer n+1, so there are 

no loops in the hidden layers (fig 2). Finally, the app checks if there is a pre-existing custom 

equalizer for that genre and applies a custom or preset equalizer onto the music when it is played 
(fig 1). 

 

For the neural network, the experiment used Python to create and train a neural network on 
Google Collab. For the training of the neural network, the dataset was taken from Kaggle to find 

open-source prelabeled data for music genre classification. The “gtzan-dataset-music-genre-

classification,” was chosen because of its labeled data from 10 different genres and fit the criteria 

for most genres of music. The experiment used this dataset with a feedforward neural network by 
using the python library Pydub, Librosa, and tensorflow [15]. Using the PyDub with the Librosa 

library python can get certain information about the file. Librosa helps with this method by 

extracting the log cepstrum or Mel-Frequency Cepstrum Coefficients (MFCC) as input. Log 
cepstrum is the logarithm operation after the Fourier transform of the signal, and then perform 

the inverse Fourier transform to obtain the spectrogram. The feedforward neural network was fed 

the MFCC data along with hyperparameters to get the best results. Feedforward Neural Networks 

are fully connected, and use dense layers, which are a classic fully connected neural network 
layer where each input node is connected to each output node. These layers also have a dropout 

attribute attached to them so that when the layer is used, the activations are set to zero for some 

random nodes and prevent overfitting (fig 6). This tensorflow model was then run for 200 epochs 
with a batch size of 32 and was able to have a test accuracy of 94.5% and a valid accuracy of 

66% (fig 3). Very similar to the research paper we were inspired by and also outperformed the 

CRNN in that paper. This wraps up the backend calculations and moves along to the front end. 
For the frontend, the app was developed on Android Studio using Flutter with Dart as the 

programming language. I created a GUI for the user to interact with the app which needed to 

choose the song to equalize, adjust the presets, and adjust settings of the actual app, which makes 

3 different pages: Home, Equalizer, and Settings (fig 4). Everything depends on the filters in the 
Equalizer tab, the equalizer tab has 10 presets for the different types of genres the algorithm sorts 

into and is a one-size fits all solution for non advanced users who just want a better listening 

experience. Advanced users are also not left out and can use this page to create their own presets 
for each of the 10 genres if they find something that suits them more. These equalizer settings 

work with the home page where the users input their music through a file picking process of the 

downloaded music on their device. We integrated the neural network into a web service scheme 
with a Python Flask framework which listens to the web request from the app frontend and sends 

the music file back to the users. We use an AWS server to host the whole service to make the api 

call stable. 
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Figure 1. Overview of the solution 

 

 
 

Figure 2. Hidden layers 

 

 
 

Figure 3. Screenshot of code 
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Figure 4. Screenshot of main page 

 

 
 

Figure 5. Frequency vs time 
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Figure 6. Sequential model screenshot 

 

4. EXPERIMENT 
  

4.1. Experiment 1 
 

The first experiment is built into tensorflow, where the values of the loss, accuracy, val_loss, and 
val_accuracy are given in a dataset, which can then be plotted as a graph. The sample size of the 

train test split is 80 percent training, and 20 percent testing, so with this ratio we can see any 

overfitting or underfitting of the dataset or overly high or low training accuracies that do not 

translate to better val_accuracy [14]. 
 

This is a graph of the experiment we performed (fig 7). we can see that there is overfitting of the 

graph after about 50 epochs as the loss went down but the val_loss increased. This means we 
needed to make adjustments in the epochs as it started overfitting after a 50 epochs. 

 

 
 

Figure 5. Voice vs mass 4.2. Experiment 2 
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The next experiment is inside of the android studio test, where we input two songs from two 

different genres like “Blank Space” by Taylor Swift, and m.A.A.d city by Kendrick Lamar. They 

test the algorithm and the app by sending the song to the server and run the algorithm, as well as 

testing the app’s ability to play and equalize the audio. 
 

By seeing the output we can see that it was sorted and the process of uploading the audio, using 

the neural network, and getting the genre classification back works. This also shows that the app 
was able to receive the genre, and apply a filter. And most importantly we can hear that an 

equalizer was able to be applied. 

 
The experiment addresses the problems above by figuring out if the feedforward neural network 

was actually having good accuracy for sorting the genre. Ultimately, it was able to prove some 

overfitting of the data, but also show little error for obvious music choices. 

 

5. RELATED WORK 
 

The 3D-DCDAE: Unsupervised Music Latent Representations Learning Method Based on a 

Deep 3D Convolutional Denoising Autoencoder for Music Genre Classification by Lvyang Qiu, 
Shuyu Li and Yunsick Sung was used to inspire the use of the GTZAN dataset on kaggle as well 

as combining some of the seven features they used such as MFCC, spectral roll-off, zero-

crossing rate, chroma frequency, and rhythm histogram [11]. 

 
Automatic Music Genre Classification Based on CRNN by Yu-Huei Cheng, Member, IAENG, 

Pang-Ching Chang, Duc-Man Nguyen, and Che-Nan Kuo helped the experiment out by testing 

out the limits of CRNNs and Short-time Fourier transform to compare the accuracies [12]. By 
basing off their research, we were able to choose feedforward neural networks as more accurate 

model for classifying the music. 

 
Comparing the Accuracy of Deep Neural Networks (DNN) and Convolutional Neural Network 

(CNN) in Music Genre Recognition (MGR): Experiments on Kurdish Music Aza Zuhair and 

Hossein Hassani helped us with the feature extraction and possible future implementations of 

data collection [13]. The feature extraction introduced the librosa library to extract things such as 
MFCC, as well as the shape of the spectral envelope into duration and segments for the neural 

network to include. 

 

6. CONCLUSIONS 
 

In the future, we hope that we can input streaming and cross app streaming into Melodic EQ so 

that more apps and audios can be processed in the background during all uses of audio. This can 
be achieved by asking for permission to constantly run in the background. The most important 

step would be detecting if any audio is playing and then taking the audio from the other app and 

then incorporating it into the Melodic EQ app and sending it to the server and back. Lag would 

need to be cut down and other problems such as compatibility with audio would also need to be 
addressed. However, if this works in the future, the app would be a non-interfering 

user experience that would only enrich the user’s experience with audio. 

 
Current limitations include the accuracy of the dataset, as even more advanced neural networks 

are not achieving higher accuracy than simple feed forward loops. Until then there are limitations 

in software to get better accuracy. Another important step is the integration of streaming into the 

app, which will likely never happen. This severely limits the amount of songs that can be played 
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and the usability of the app in a simple manner. Lastly, is the user’s trust if we implement 
background running, many users are protective of their privacy and we need to build that trust to 

allow the app to work in the background. 

 

In the future, I hope to increase the accuracy as software improves and better optimization and 
parameters help with the accuracy. Finding better labeled music data might also help as music 

evolves as time moves on, ultimately the end goal is to improve the accuracy of the model with 

no lag. 
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