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ABSTRACT 
 
Public and private organizations are collecting personal data regarding day to day life of 

individuals and accumulating them in large databases. Data mining techniques may be applied 

to such databases to extract useful hidden knowledge. Releasing the databases for data mining 

purpose may lead to breach of individual privacy. Therefore the databases must be protected 

through means of privacy preservation techniques before releasing them for data mining 

purpose. Microaggregation is a privacy preservation technique used by statistical disclosure 

control community as well as data mining community for microdata protection. The Maximum 

distance to Average Vector (MDAV) is a very popular multivariate fixed-size  microaggregation 

technique studied by many researchers. The principal goal of such techniques is to preserve 

privacy without much information loss.  In this paper we propose a variable-size, improved 

MDAV technique having low information loss. 
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1. INTRODUCTION 

 
Data mining techniques have lead to the rapid extraction of previously unknown knowledge from 

huge collection of data. Advancement of computer technology has enabled different public and 

private organization to easily collect, store and manage large amount of data including personal 

data regarding individuals. Such datasets may be released to data miners for research analyses. 

However, the privacy of individuals may be affected if the databases got published or outsourced 

for analysis, as the information contained in the databases may be sensitive.  There exist several 

kinds of disclosure risks to the privacy of the individuals [1]. Thus the problem is, how to extract 

relevant knowledge from large amount of data while protecting at the same time sensitive 

information existing in the database, which may raise various social and ethical issues if got 

revealed. Therefore, before conducting data mining the data should be protected through some 

privacy preserving techniques [2]. This problem has been discussed by multiple communities 

such as privacy preserving data mining (PPDM) community, statistical disclosure control (SDC) 
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community, database community etc. The protection provided by privacy preserving methods 

normally results in some degree of data modification or masking, which may be perturbative or 

nonperturbative. The challenge is to tune the modification of data so that both privacy risk and 

information loss are kept below certain acceptable limits.  A survey of   perturbative protection 

methods can be found in [1]. 

 

Microaggregation is a perturbative technique for microdata (i.e individual records) protection 

appearing in statistical disclosure control [3]. Given a dataset, it builds small groups of at least k 

records, with k being a user-definable parameter. Then, the microaggregated data set is built by 

replacing each original record by the centroid of the group it belongs to. The microaggregated 

data set can be released without jeopardizing the privacy of the individuals which form the 

original data set because k records have an identical protected value. To minimize information 

loss caused by microaggregation, records within each group should be as homogeneous as 

possible. Multivariate microaggregation with maximum within group records homogeneity is NP-

hard[4], so heuristics are normally used. There exist two main types of heuristics: fixed-size 

microaggregation [5-11] and data-oriented microaggregation [12-14]. The former yield groups 

with a fixed number of records, except possibly one group and the later yield groups whose size 

varies depending on the distribution of the original records. Fixed-size microaggregation 

heuristics are computationally very efficient, due to their simplicity. On the other hand, data-

oriented heuristics can often achieve lower information loss because they are able to adapt the 

choice of group sizes to the structure of the dataset. 

 

In [5], optimal microaggregation is defined as the one yielding a k-partition maximizing the 

within-groups homogeneity; the higher the within-groups homogeneity, the lower the information 

loss, since microaggregation replaces values in a group by the group centroid. They showed that 

groups in an optimal k-partition contain between k and 2k-1 records. The sum of square error 

(SSE) criterion is common to measure homogeneity in clustering [9]. In terms of SSE, 

maximizing within-groups homogeneity is equivalent to finding a k-partition minimizing the 

within group SSE. The goal of microaggregation is to minimize the SSE measure, which is 

defined as:  
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Where g is the total number of clusters (groups), ci is the i-th cluster and ix  is the centroid of ci. 

The total sum of square SST is the sum of square error within the entire dataset calculated by 

summing the Euclidean distance of each record xij to the centroid x  as follows:  
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Microaggregation techniques are often compared on the basis of the SSE or the IL (information 

loss) measure. The measure IL standardized between 0 and 100 can be obtained from SST as:  

 

SST

SSE
IL = . 100  

The Maximum distance to Average Vector (MDAV) is a very popular multivariate fixed-size  

microaggregation technique. In this paper we present a variable-size  MDAV technique for 
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numeric data producing low information loss. It shows better results in comparison to other 

reported methods.  

 

Rest of the paper is organized as follows. In Section 2 we introduce the different variants of 

MDAV microaggregation methods. Section 3 describes the proposed variable-size MDAV 

algorithm. In Section 4, experimental results are presented and the effectiveness of the proposed 

algorithm is assessed. Finally, in Section 5 conclusions are drawn. 

 

2. MDAV  MICRODATA PROTECTION ALGORITHMS 

 
The MDAV method is one of the best heuristic methods for multivariate microaggregation. The 

algorithm was proposed in [6, 7] as part of a multivariate microaggregation method implemented 

in the µ-Argus package for statistical disclosure control. Several variant of this fixed-size 

microaggregation algorithm exists [6, 7, 8, 14] with minor differences. Some of them are 

presented here for comparison purpose and to build the foundation for the proposed algorithm. 

Firstly, we present the basic version of the MDAV algorithm as presented in [13] below.  The 

dataset X with n records and value of group size k are to be provided as input to the algorithm.  

Algorithm-1 (The MDAV algorithm): 

 

1. set i=1; n=|X|; 

2. while (n≥2k) do  

2.1      compute centroid  x  of remaining records in X; 

2.2            find the most distant record xr from x ; 

2.3            find k-nearest neighbours y1,y2,…,yk of xr; 

2.4            form cluster ci with the k-neighbours y1,y2,…,yk; 

2.5            remove records y1,y2,…,yk from dataset X; 

2.6            set n=n-k;  i=i+1; 

2.7            find the most distant record xs from xr; 

2.8            find k-nearest neighbours y1,y2,…,yk of xs; 

2.9            form cluster ci with the k-neighbours y1,y2,…,yk; 

2.10          remove records y1,y2,…,yk from X; 

 2.11         set n=n-k;  i=i+1; 

2.12.    end while 

3.         if (n≥k) then  

3.1      form a cluster ci with the n remaining records; 

3.2            set n=n-n;  i=i+1; 

3.3       endif  

4.         if (n>0) then 

4.1      compute centroid  x  of remaining records in X; 

4.2      find the closest cluster centroid jc from x ; 

4.3      add the remaining records to cluster cj; 
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4.4 endif 

5. end algorithm 

 

Given a dataset X with n records, MDAV iterates  building two groups, each of size k until number 

of remaining unassigned records to any group becomes less than 2k (step 2). In order to build 

these groups, the centroid x  of the remaining unassigned records is computed at the beginning of 

each iteration. Then the most distant record xr from x  is found and a group is built with the k-

nearest neighbors of xr including itself. These k records are removed from the dataset X. Next, the 

most distant record xs from xr is found and another group is built with the k-nearest neighbours of 

xs. When the remaining records after termination of iterations is between k and 2k-1 MDAV 

simply forms a group with all of them (step 3). If less than k records remain all the records of this 

subgroup are assigned to its closest group determined by computing distance between centroids 

of the groups (step 4).  All groups have k elements except only one. Finally, given the k-partition 

obtained by MDAV, a microaggregated data set is computed by replacing each record in the 

original dataset by the centroid of the group to which it belongs. This step is not shown in the 

algorithm. 

 

The MDAV-generic [7] algorithm is a variant of the MDAV algorithm. This algorithm smoothly 

handles the remaining records after the iterations terminate (steps 3 and 4). Since the algorithm 

iterates until there are at least 3k remaining records (note the difference with algorithm-1 in step 

2), there will be between k and 3k-1 records left unassigned after iterations terminate. If there are 

at least 2k records, a cluster is formed with the k-nearest neighbours of the most distant record 

from the centroid as usual after which at least k  records remain unassigned (step 3). If less than 

2k records remain, a cluster is formed with all of the remaining records (step 4). The algorithm is 

produced below. 

 

Algorithm-2 (The MDAV-generic algorithm): 

 

1.         set i=1; n=|X| 

2.         while (n≥3k) do  

2.1      compute centroid x  of remaining records in X; 

2.2            find the most distant record xr from x ; 

2.3            find k-nearest neighbours y1,y2,…,yk of xr; 

2.4            form cluster ci with the k-neighbours y1,y2,…,yk; 

2.5            remove records y1,y2,…,yk from dataset X; 

2.6            set n=n-k;  i=i+1; 

2.7            find the most distant record xs from xr; 

2.8            find k-nearest neighbours y1,y2,…,yk of xs; 

2.9            form cluster ci with the k-neighbours y1,y2,…,yk; 

2.10          remove records y1,y2,…,yk from dataset X; 

2.11          set n=n-k;  i=i+1; 

2.12.    end while 

3.         if (n≥2k) do  

3.1      compute centroid x  of remaining records in X; 
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3.2            find the most distant record xr from x ; 

3.3            find k-nearest neighbours y1,y2,…,yk of xr; 

3.4            form cluster ci with the k-neighbours y1,y2,…,yk; 

3.5            remove records y1,y2,…,yk from dataset X; 

3.6            set n=n-k;  i=i+1; 

3.7       endif 

4. if ( n>0) then 

4.1      form a cluster ci with the n remaining records; 

4.2      set n=n-n; i=i+1;  

4.3 endif 

5.         end algorithm 

 

The following algorithm (MDAV1) is presented in [14] with minor modifications in steps 3 and 4 

resulting in slightly less information loss than the MDAV algorithm (algorithm-1). If at least k 

records remain unprocessed at step 3, this algorithm forms a single group using the group 

formation process as in step 2. When less than k records remain at last (step 4) it assigns each of 

the remaining records to its closest cluster among the clusters that are already formed. Thus there 

may be more than one group having more than k records. 

 

Algorithm-3 (The MDAV1 algorithm): 

 

1. set i=1; n=|X|; 

2. while (n≥2k) do  

2.1      compute centroid x  of remaining records in X; 

2.2            find the most distant record xr from x ; 

2.3            find k-nearest neighbours y1,y2,…,yk of xr; 

2.4            form cluster ci with the k-neighbours y1,y2,…,yk; 

2.5            remove records y1,y2,…,yk from dataset X; 

2.6            set n=n-k;  i=i+1; 

2.7            find the most distant record xs from xr; 

2.8            find k-nearest neighbours y1,y2,…,yk of xs; 

2.9            form cluster ci with the k-neighbours y1,y2,…,yk; 

2.10          remove records y1,y2,…,yk from dataset X; 

2.11          set n=n-k;  i=i+1; 

2.12.    end while 

3.         if (n≥k) then  

3.1      compute centroid x  of remaining records in X; 

3.2            find the most distant record xr from x ; 

3.3            find k nearest neighbours y1,y2,…,yk of xr; 
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3.4            form cluster ci with the k-neighbours y1,y2,…,yk; 

3.5            remove records y1,y2,…,yk from dataset X; 

3.6            set n=n-k;  i=i+1; 

3.7       endif 

4. if (n>0) then 

4.1      for each remaining record xr in X do 

4.1.1           find the closest cluster centroid jc  from xr; 

4.1.2           add the records xr to cluster cj; 

4.1.3         end for  

4.2 endif 

5. end algorithm 

 

The above three algorithms construct two groups in each iteration. The authors in [8] presented 

the Centroid-based Fixed-size microaggregation method that constructs one group in each 

iteration. The algorithm is adaptation of the MDAV algorithm so that the iteration continues until 

there are at least k records that are unassigned (step 2). Then, each of the remaining records is 

assigned to its closest group. We adapt the MDAV-generic algorithm (algorithm-2) in the similar 

way. We call it MDAV-single-group algorithm and present it here as it forms the basis of our 

proposed variable-size MDAV algorithm. 

 

Algorithm-4 (The MDAV-single-group algorithm): 

 

1. set i=1; n=|X|; 

2. while (n≥3k) do  

2.1     compute centroid x  of remaining records in X; 

2.2           find the most distant record xr from x ; 

2.3           find k-nearest neighbours y1,y2,…,yk of xr; 

2.4           form cluster ci with the k-neighbours y1,y2,…,yk; 

2.5           remove records y1,y2,…,yk from dataset X; 

2.6           set n=n-k;  i=i+1; 

2.7.      end while 

3.         if (n≥2k) do  

3.1     compute centroid x  of remaining records in X; 

3.2           find the most distant record xr from x ; 

3.3           find k-nearest neighbours y1,y2,…,yk of xr; 

3.4           form cluster ci with the k-neighbours y1,y2,…,yk; 

3.5           remove records y1,y2,…,yk from dataset X; 

3.6           set n=n-k;  i=i+1; 

3.7       endif 
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4.         if ( n>0) then 

4.1    form a cluster ci with the n remaining records; 

4.2    set n=n-n; i=i+1; 

4.3    endif 

5. end algorithm 

 

Computational cost of all the four MDAV algorithms presented above become O(n
2
) [13].  The 

main problem of these fixed-size algorithms is lack of flexibility. They only generate groups of 

fixed cardinality k causing higher information loss. V-MDAV (Variable-size Maximum Distance 

to Average Vector) is the first variable-size microaggregation method presented in [12, 13]. This 

algorithm extends the group that is currently formed up to a maximum size of 2k-1 based on some 

heuristics. To extend the current group it finds the closest unassigned record, emin outside the 

group to any record inside the group and the corresponding distance between these two records is 

termed din. Then, the closest unassigned record to emin is found with corresponding distance being 

termed dout. If din<γdout then the record emin is inserted in the current cluster. The extension process 

is repeated until the group size is equal to 2k-1 or when a decision of inclusion is not satisfied. 

Here γ is a user defined constant. The determination of the best value of γ for a given dataset is 

not straightforward.  Values of γ close to zero are effective when the data are scattered, when the 

dataset is clustered the best value of γ is usually close to one [12]. To save time V-MDAV 

computes the global centroid of the dataset at the beginning of the algorithm and keeps it fixed 

instead of recomputing it in each iteration. Each of the remaining records after termination of 

iterations is inserted to its closest cluster.  This may cause a cluster to have number of records in 

excess of allowed 2k-1 when the closest cluster already contains 2k-1 records because of the 

extension process. The algorithm for building a k-partition using V-MDAV is as follows: 

 

Algorithm-5 (The V-MDAV algorithm): 

 

1. set i=1; n=|X|; 

2. compute centroid x  of remaining records in X; 

3. while (n≥k) do  

3.1           find the most distant record xr from x ; 

3.2           find k-nearest neighbours y1,y2,…,yk of xr; 

3.3           form cluster ci with the k-neighbours y1,y2,…,yk; 

3.4           remove records y1,y2,…,yk from dataset X; 

3.5           set n=n-k;  flag=true; 

3.6           if (n==0) then set flag = false; 

3.7     while (|ci|<2k-1 and flag==true) 

3.7.1             find unassigned record emin which is the closest to any  record of the cluster ci and let 

din be the distance between the two records.  

3.7.2        let, dout be the  distance from emin to the closest unassigned record in X; 

3.7.3        if  (din < γdout) then 

3.7.3.1              assign emin to the current cluster ci; 

3.7.3.2              set n=n-1; 

3.7.3.3              if (n==0) then set flag = false;  
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3.7.3.4        else set flag=false;  

3.8     end while 

3.9           i=i+1; 

3.10  end while 

4. if (n<k) then 

4.1     for each remaining record xr in X do 

4.1.1        find the closest cluster centroid jc  from xr; 

4.1.2        add the records xr to cluster cj; 

4.1.3        end for  

4.2 endif 

5. end algorithm 

 

Computational cost of V-MDAV algorithm also remains O(n
2
) [12]. Although the V-MDAV 

algorithm produces microaggregated datasets with lower information loss, other variable-size 

algorithms can be developed with better performance. In the next section we present a new 

variable-size microaggregation algorithm with lower information loss.  

 

3. PROPOSED ALGORITHM 

 
Proposed algorithm is an extension of the MDAV-single-group algorithm presented in the 

previous section (algorithm-4) to make it variable-size. Experimental study presented in the next 

section shows that for some situations the single-group algorithm performs better than double-

group algorithms, but the reverse is the case for some other situations. Therefore, variable-size 

algorithms are more likely to become single-group algorithms as it is natural to form a group and 

then extend it. We have selected MDAV-single-group algorithm as the basis for our variable-size 

algorithm because it smoothly handles less than k residuals records that remain at end of 

termination of iterations. Also minimum of 3k unassigned records become a requirement for our 

algorithm to continue group formation and extension. The proposed algorithm called MDAV2k is 

presented below. 

 

Algorithm-6 (The MDAV2k algorithm): 

 

1. set i=1; n=|X|; 

2. while (n≥3k) do  

2.1     compute centroid x  of remaining records in X; 

2.2           find the most distant record xr from x ; 

2.3           find 2k nearest neighbours y1,y2,…,y2k of xr; 

2.4           form cluster ci with first k-neighbours y1,y2,…,yk; 

2.5           remove records y1,y2,…,yk from dataset X; 

2.6           set n=n-k;  j=k+1; 

2.7           compute centroid ix  of cluster ci; 

2.8           while (j<2k and |ci|<2k-1 ) do 
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2.8.1            find distance d1 of record xr from ix ; 

2.8.2            find distance d2 of record yj from ix ; 

2.8.3            find k-nearest neighbours z1, z2,…,zk of yj in X; 

2.8.4            compute centroid z  of z1,z2,…,zk; 

2.8.5            compute distance d3 of yj from z ; 

2.8.6            compute γ=d3/d1; 

2.8.7            if (γ>1.0)  then γ = 1.0+(1.0/(5.0+γ)); 

2.8.8            if ( d2< γd3) then 

2.8.8.1            insert yj in current cluster ci; 

2.8.8.2            recompute centroid 
ix  of cluster ci; 

2.8.8.3            remove record yj from X; 

2.8.8.4            set n=n-1; 

2.8.8.5         endif 

2.8.9        end while 

2.9           set i=i+1; 

2.10.    end while 

3. if (n>2k) then 

3.1    compute centroid x  of remaining records in X; 

3.2    find the most distant record xr from x ; 

3.3    find k nearest neighbours y1,y2,…,yk of xr; 

3.4    form cluster ci with the k-neighbours y1,y2,…,yk ; 

3.5    remove records  y1,y2,…,yk from dataset X; 

3.6    set n=n-k; i=i+1; 

3.7 endif 

4. if ( n>0) then 

4.1       form a cluster ci with the n remaining records; 

4.2       i=i+1; 

4.3 endif 

5. end algorithm  

 

The MDAV2k algorithm iterates so long as at least 3k records remain unassigned. In each iteration 

the algorithm finds 2k nearest neighbours, denoted by y1,y2,…,y2k of the farthest record xr from 

the centroid x  of the remaining records in dataset X. Current cluster, ci is formed with the first k-

neighbours y1,y2,…,yk of xr. Each of the other k neighbours is tested for inclusion in the currently 

formed cluster by computing a heuristic. This algorithm also uses a constant  γ in the heuristic but 

it is computed dynamically for every situation instead of being a user defined constant as in V-

MDAV. Let, ix  be the centroid of the cluster ci. Consider the (k+1)-th neighbour, yk+1 of xr. 
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Compute distance d1 of xr from ix and distance d2 of yk+1 from ix . Compute centroid z  of 

z1,z2,…,zk, the k-nearest unassigned neighbours of yk+1. Find distance d3 of yk+1  from z . Compute 

γ=d3/d1. If γ>1.0 then set γ=1.0+1.0/(5.0+γ) to restrict the value of γ to maximum of 1.16. 

Restriction of γ value is required because higher value of it will favour inclusion that may cause 

increase of information loss rather than decreasing. Now, if d2<γd3 then insert yk+1 in cluster ci 

and recompute the centroid of the cluster. Then the test is repeated for yk+2,…,y2k. For y2k, if the 

cluster ci has already 2k-1 records in it then the test should be skipped and record y2k should not 

be inserted in the cluster ci. 

 

3.1. Complexity analysis 

 
In each iterations between k and 2k-1 records are grouped, on average (3k-1)/2 records. The 

algorithm will perform at most 2n/(3k-1) iterations. In each iteration, it needs to compute 2k 

nearest neighbours in the remaining records followed by extension of the cluster created k times. 

In each of the extension process k nearest neighbours need to be found in the remaining records 

of the dataset. If we assume that on average n/2 unassigned records remain in the dataset, 

complexity of the algorithm will be O(2n/(3k-1)(2kn/2+kkn/2)) i.e. O(kn
2
). 

 

4. EXPERIMENTAL RESULTS 

 
In this section we present experimental results performed on the proposed method. We have 

implemented in C++ under LINUX environment all the six microaggregation algorithms namely 

MDAV, MDAV-generic, MDAV1, MDAV-single-group, V-MDAV presented in section 2 and our 

proposed algorithm MDAV2k presented in section 3. Experiments are performed on the following 

three datasets proposed as reference microdata datasets during the “CASC” project [15].   

 

• The “Tarragona” dataset contains 834 records with13 numerical attributes.  

• The “Census” dataset contains 1,080 records with 13 numerical attributes.  

• The “EIA” dataset contains 4,092 records with 11 numerical attributes. 

 

Attributes of the datasets are standardized by subtracting their mean and dividing by their 

standard deviation, so that they have equal weights when computing distances.   

The results are presented in Table 1. In order to compare the performance of the algorithms both 

SSE and IL measures are reported for different values of k and for each of the algorithms and for 

each of the three datasets. 

 

4.1. Comparing double-group MDAV algorithms 

 
It can be seen from the Table 1 that performance of the three double-group fixed-size algorithms 

MDAV, MDAV1 and MDAV-generic (first three rows in the table for each dataset) are almost 

similar. Although the difference is in fractional parts only, it can be seen that MDAV1 is slightly 

better than MDAV which is slightly better than MDAV-generic in terms of SSE as well as IL 

measure. Lower SSE and IL measures indicate better performance. MDAV1 obtains lesser 

information loss because it distributes the less than k remaining records to more than one cluster. 

If number of records are integral multiple of k all the three algorithm produce exactly similar 

results. 
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4.2. Comparing double-group and single-group MDAV algorithms  

 

Comparing any one of the double group algorithms to the single group algorithm MDAV-single-

group (Fourth row in the table for each dataset) it can be concluded that neither of the double-

group or single-group algorithm performs better than the other. Performance of any double-group 

algorithm is better than the single-group algorithm for the Tarragona dataset, but reverse is the 

case for Census dataset. Results for the EIA dataset shows that performance depends upon 

different values of k also.  

 

4.3. Comparing variable-size MDAV algorithms 
 

Fifth and sixth rows for each dataset in Table 1 present the results for variable-size algorithms V-

MDAV and the proposed algorithm MDAV2k. It is clear that MDAV2k performs far better than V-

MDAV producing lesser information loss. We have extended the MDAV-single group algorithm 

for developing the variable-size MDAV2k algorithm, so performance of the proposed algorithm 

should be compared to this algorithm. It can be seen from Table 1 that the proposed algorithm 

produces lower information loss than the MDAV-single-group algorithm. In fact for the EIA as 

well as Census datasets the MDAV2k algorithm shows better results than any of the presented 

algorithms. Variable-size algorithms show better performance for datasets with clustering 

tendency. This is the reason for achieving greater reduction of information loss for EIA dataset. 

Tarragona is a scattered dataset exhibiting no tendency for clustering for lower value of k, that is 

why reduction of information loss by proposed algorithm is very less.  

 

For the V-MDAV algorithm γ value is user specified. The results for this algorithm are presented 

in Table 1, taking γ=0.2 for Tarragona and Census datasets and γ=1.1 for the EIA dataset as these 

two values of  γ are suggested by authors of V-MDAV in [12]. The MDAV2k algorithm 

dynamically adjusts the value of γ.  

 

Table 1.  Experimental results. D
ataset 

Method 
K=3 

SSE : ( IL) 

K=4 

SSE : (IL) 

K=5 

SSE : (IL) 

K=10 

SSE : (IL) 

T
arrag

o
n

a 
1. MDAV 

1835.8318 

(16.9326) 

2119.1678 

(19.545) 

2435.2796 

(22.461)5 

3598.7743 

(33.1929) 

2. MDAV1 
1835.8318 

(16.9326) 

2119.1549 

(19.5458) 

2435.2534 

(22.4613) 

3598.7173 

(33.1924) 

3. MDAV-gen 
1835.8318 

(16.9326) 

2119.1740 

(19.5460) 

2435.3160 

(22.4619) 

3598.7743 

(33.1929) 

4. MDAV-single 
1839.4617 

(16.9661) 

2139.1554 

(19.7303) 

2473.9951 

(22.8186) 

3601.2138 

(33.2154) 

5. VMDAV 
1839.6440 

(16.9678) 

2135.5903 

(19.6974) 

2481.3201 

(22.8862) 

3607.2572 

(33.2711) 

6. MDAV2k 
1839.4617 

(16.9661) 

2139.1497 

(19.7302) 

2418.5713 

(22.3074) 

3600.4316  

(33.2082) 

C
en

su
s 

1. MDAV 
799.1827 

(5.6922) 

1052.2557 

(7.4947) 

1276.0162 

(9.0884) 

1987.4925 

(14.1559) 

2. MDAV1 
799.1827 

(5.6922) 

1052.2557 

(7.4947) 

1276.0162 

(9.0884) 

1987.4925 

(14.1559) 
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3. MDAV-gen 
799.1827 

(5.6922) 

1052.2557 

(7.4947) 

1276.0162 

(9.0884) 

1987.4925 

(14.1559) 

4. MDAV-single 
793.7595 

(5.6536) 

1044.7749 

(7.4414) 

1247.3171 

(8.8840) 

1966.5216 

(14.0066) 

5. VMDAV 
794.9373 

(5.6619) 

1054.9675 

(7.5140) 

1264.5801 

(9.0070) 

1975.8520 

(14.0730) 

6. MDAV2k 
791.5291   

(5.6377) 

1037.6860   

(7.3909) 

1243.5027   

(8.8569) 

1957.0561  

(13.9391) 

E
IA

 

1. MDAV 
217.3804 

(0.4829) 

302.1859 

(0.6713) 

750.1957 

(1.6667) 

1728.3120 

(3.8397) 

2. MDAV1 
217.3804 

(0.4829) 

302.1859 

(0.6713) 

750.1957 

(1.6667) 

1728.309 

(3.8397) 

3. MDAV-gen 
217.3804 

(0.4829) 

302.1859 

(0.6713) 

750.2037 

(1.6667) 

1728.3120 

(3.8397) 

4. MDAV-single 
215.1095 

(0.4779) 

301.9676 

(0.6709) 

783.0258 

(1.7396) 

1580.8008 

(3.5120) 

5. VMDAV 
229.2986 

(0.5094) 

437.8020 

(0.9726) 

588.0341 

(1.3064) 

1264.4328 

(2.8091) 

6. MDAV2k 
191.6008   

(0.4257) 

289.4685   

(0.6431) 

405.1972   

(0.9002) 

1188.4501   

(2.6403) 

 

The experimental results presented here show that proposed MDAV2k is a good algorithm 

producing microaggregated datasets with lower information loss. 

 

5. CONCLUSION 

 
In this paper we have made an experimental study on several variants of the MDAV 

microaggregation technique for privacy preservation. Performances of the double-group fixed-

size algorithms are found to be almost similar. Performance of single-group and double group 

algorithms depend on datasets as well as value of k, so it cannot be judged which is better. 

Variable-size algorithms outperform fixed-size algorithms.  

 

We also proposed an inproved variable-size MDAV algorithm that produce lower information loss 

with little increase in computational complexity (O(kn
2)). Fixed-size algorithms have complexity 

O(n2). This is acceptable as k is usually a small integer.   

 

Proposed algorithm is a modification of the MDAV algorithm to make it variable-size. The 

algorithm computes 2k nearest neighbours of the farthest record from the centroid of the 

remaining unassigned records in the dataset. First k of the 2k neighbours form a cluster and it is 

extended up to a size of 2k-1 records by including some of the remaining k neighbours based on a 

heuristic. The V-MDAV algorithm requires a user defined global constant γ to be used for the 

cluster extension process. In our algorithm the value of γ is dynamically computed for each 

locality. Experimental results on standard datasets show better performance of this algorithm in 

comparison to other existing algorithms. 

 

To form a single cluster 2k nearest neighbours of the currently selected record for cluster 

formation is considered.  It is possible to consider 3k neighbours instead of 2k as the algorithm 
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iterates so long as there are at least 3k neighbours yet to be assigned to any cluster.  This will 

increase computation time slightly while producing better results as more records are considered 

for inclusion in the cluster extension. Another possibility for modification of the algorithm is to 

form the current cluster by finding k nearest neighbours of the present record considered and then 

test k or 2k nearest neighbours of the centroid of the current cluster for inclusion in the extension. 
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