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ABSTRACT 

Image reconstruction is a process of obtaining the original image from corrupted data. 

Applications of image reconstruction include Computer Tomography, radar imaging, weather 

forecasting etc. Recently steering kernel regression method has been applied for image 

reconstruction [1]. There are two major drawbacks in this technique. Firstly, it is 

computationally intensive. Secondly, output of the algorithm suffers form spurious edges 

(especially in case of denoising). We propose a modified version of Steering Kernel Regression 

called as Median Based Parallel Steering Kernel Regression Technique. In the proposed 

algorithm the first problem is overcome by implementing it in on GPUs and multi-cores. The 

second problem is addressed by a gradient based suppression in which median filter is used. 

 

Our algorithm gives better output than that of the Steering Kernel Regression. The results are 

compared using Root Mean Square Error(RMSE). Our algorithm has also shown a speedup of 

21x using GPUs and shown speedup of 6x using multi-cores.   
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1. INTRODUCTION 

 
Images have become inherent part of day to day life. The image processing algorithms to improve 

the quality of images are innumerable, but many of them are application specific. Recently, 

Takeda et al.[1] have proposed a novel regression technique for image reconstruction known as 

Steering Kernel Regression. There are two major drawbacks associated with this technique. 

 

It is computationally intensive and, the output of the algorithm suffers from spurious edges 

(especially in case of denoising). In the proposed algorithm, the first problem is overcome by 

implementing the algorithm on GPUs and multi-cores. The second problem is addressed by 

deblurring of the output using median filter. GPU based efficient solutions for data parallel image 
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processing applications have been proposed by many authors [5][6][7][8]. Like many image 

processing applications, Steering Kernel Regression also has inherent data parallelism. Taking 

advantage of this inherent parallelism, we have identified and implemented the three most time 

consuming parts of the algorithm both on multi-core and GPUs. We have addressed the second 

problem by suppressing the spurious edges. These edges are produced due to noise and get 

stronger with the number of iterations of the algorithm. In the proposed technique we use median 

filter at the end of each iteration to remove the spurious edges.  

 

2. DATA ADAPTIVE KERNEL REGRESSION 
 

Regression is a process of finding the underlying signal in a given data, where the original signal 

is corrupted by noise. Many image regression techniques like edge-directed interpolation [2], and 

moving least squares [3] were proposed. Classical parametric regression methods assume that 

there is a specific model for underlying signal and estimate the parameters of this model. The 

parametric estimation has been used in major image processing techniques. The model generated 

out of the estimated parameters is given as the best possible estimate of the underlying signal. 

 

In contrast, non parametric regression methods don’t assume any underlying model, but depend 

on the data itself to arrive at the original signal. Regression function is the implicit model that has 

to be estimated. Takeda et al. [1] introduced steering kernel regression for image processing and 

reconstruction and have shown that it out-performs existing regression techniques. A brief 

introduction to the algorithm is given as follows: 

 

The measured data is given by �� = �(��) + 	�, i=1,...,P, where �(��) is a regression function 

acting on pixel coordinates, 	�s are independent and identically distributed zero mean noise 

values, P indicates total number of pixels. Assuming that the regression function is smooth to a 

certain order N, the objective functional estimation of �(�) can be deduced (detailed derivation is 

given in [1]) by minimization of the following functional:  

 

 min
{��}

Σ���
� [�� − �� − ���(�� − �) − ���(�� − �)� − 

 … ���(�� − �)�]� �
� ��  !"#!

� $                                   (1) 

 

where �� is %&� derivative of �(�) and ℎ is global smoothing parameter. ��(�� − �) is the kernel 

weight assigned to the samples and is defined such that the nearby samples are given higher 

weight than the farther ones. 

 

Takeda et al.[1] have proposed to use a non-linear combination of data. In other words, data 

adaptive kernel regression not only depends on the sample location and density but also on the 

radiometric properties. 

 

The incorporation of these radiometric properties were done by adapting the regression kernel 

locally, so that the kernel aligns itself along the features such as edges, than across them. This 

enables us to capture the features in better detail. The major contribution of Takeda et al.[1] is to 

use adaptive kernel regression for image processing and reconstruction. They call this adaptive 

technique, steering kernel regression.  
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The central notion of the  steering kernel regression is to estimate the local gradients. The 

gradient information captures the features of the image. These in turn are used to find the weights 

to be assigned to the neighboring samples. Pixel near an edge will be influenced by the pixels of 

the same side of the edge. With this intuition in mind, the dominant orientation of the local 

gradients are measured. The kernel is then effectively steered locally based on this dominant 

orientation.  

 

Our Median Based Parallel Steering Kernel Regression Technique is an iterative technique. The 

output of the previous iteration is passed as input for the next iteration. As the first step of the 

algorithm, output of the Classical Kernel Regression is passed as input for the first iteration of the 

algorithm. Brief description of the algorithm is as follows:   

1. Finding local gradients at each image point.  

2. Based on the gradient value at a pixel, the scaling, elongation and rotation    parameters are 

estimated. There are used to construct the steering matrix.  

3. Application of Steering Kernel Regression algorithm.  

4. Post-processing of the resultant image to suppress spurious edges.  

5. Repeating the steps 2 to 4, till the noise level in the output image is below the predefined 

threshold.  

3. IMPLEMENTATION 

 
The serial implementation of steps 1 to 3 have been implemented by Takeda et.al. We have used 

their code, which is available at http://www.soe.ucsc.edu/ htakeda/MatlabApp, for the 

improvement. The parallel implementation of the algorithm is discussed in section 3.1. In section 

3.2 we dwell on the method to suppress spurious edges.  

 

3.1 PARALLEL IMPLEMENTATION 

 
The serial code was programmed in Matlab and is available at http://www.soe.ucsc.edu/ 

htakeda/MatlabApp. The code was profiled using Matlab Profiling Tool and it was observed that 

the steps 1 and 3 of steering kernel regression are most time consuming. On careful analysis, we 

discovered that these steps have a lot of scope for parallelism. The serial implementation of step 3 

consists the following ideas:   

1. To all pixels, in each iteration running till the square of the upscale factor, determine the 

feature matrix.  

2. For each pixel, 

• Obtain the weight matrix using the neighboring samples of covariance matrix. 

• Compute equivalent kernel which involves inverse of a matrix resulting from the product of 

the feature and weight matrices.  

• Estimate the pixel values and gradient structure values for the output image.  

In Step 1, classic regression method computes feature matrix, weight matrix and equivalent 

kernel. The most time consuming action involved in this method is to estimate the target values, 

local gradient structure values along the axes directions. 
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Steps 1 and 3 of steering kernel regression involve a lot of data-parallelism and CUDA is used to 

parallelize these steps. Mex interface feature integrates CUDA into Matlab. We shall now discuss 

the parallel implementation of the step 3 :   

• Copy the original image, covariance matrix, feature matrix from the CPU host memory to GPU 

global memory.  

• Kernel is launched with the total number of threads equaling the total number of pixels in the 

source image.  

• A thread is assigned to each pixel and it does the above mentioned steps of determining weight 

matrix and equivalent kernel.  

• It contributes (� pixels in the estimated output image, where R is the upscaling factor.  

Computing the steering matrix (step 2) is done on multi-core for speed up of the whole process.  

OPTIMIZATIONS 
 

Since shared memory is on chip, accesses to it are significantly faster than accesses to global 

memory. Feature matrix is copied from host memory to shared memory of GPU. Only one thread 

in a block will get the data from global to shared memory. Shared memory could only fit feature 

matrix as the image size exceeds it’s space limitations. 

 

For the remaining data, the global memory request for a warp is split into two memory requests, 

one for each half-warp, which are issued independently. GPU hardware can combine all memory 

requests to a single memory transaction if the threads in a warp access consecutive memory 

locations[4]. Our model is designed in such a way that the memory access pattern by threads is 

coalesced, thereby improving performance and ensuring low latency. The multi-core code is 

implemented using the Parallel Computing Toolbox of Matlab environment. The performance 

comparison of these two implementations is given in the following section. 

 

3.2 SPURIOUS EDGE SUPPRESSION 

 

Spurious edges produced by single iteration of the steering kernel algorithm are not as strong as 

the original edges in the image. Due to which the gradient strength of the spurious edges is much 

lower than that of the original edges. Using this idea, we can suppress the edges which have the 

gradient strength less than a given threshold(it will be set based on the value of edges in the 

image). The value of the threshold depends upon the application. It can be static or given by a 

heuristic. We have used thresholds derived from the maximum gradient values. For suppressing 

the spurious edge pixels we applied median filter over the pixel’s neighbourhood. 

 

4. RESULTS  

 

4.1 COMPUTATIONAL EFFICIENCY 

 
In this section we show the results of using GPUs and multicores to improve the computational 

complexity of the first three steps of our algorithm(Steering Kernel Regression). We observe that 

the computational efficiency of the algorithm has been improved while maintaining the quality of 

the output images. We can show that the GPU and multi-core implementations are consistent with 

results of original serial implementation. In the next section, we present the results of our 
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algorithm(which incorporates post processing module for suppressing the spurious edges)in 

comparison with Steering Kernel Regression. 

 

EXPERIMENTAL SETUP  
 

For all experiments, the parallelized version of the steering kernel regression was run on Tesla 

T20 based Fermi GPU. The serial and multi-core implementations of the same were run in Matlab 

R2012a on a node with Intel(R) Xeon(R) 2.13GHz processor and 24 GB RAM. CUDA timers 

were employed, which have resolution upto milliseconds to time the CUDA kernels and more 

importantly they are less subject to perturbations due to other events like page faults, interrupt 

from the disks. Also CudaEventRecord is asynchronous; there is less of Heisenberg effect when 

timing is short, exactly suitable to GPU-intensive operations as in these applications. For the 

multi-core code timers provided by Matlab were used. 

 

EXPERIMENTS.  

 

Experiments and the performance results of GPU, multi-core implementations on simulated and 

real data are presented. These experiments were conducted on diverse applications and attest the 

claims made in previous sections. In all experiments, we considered regularly sampled data. 

 

An important note to consider is the determination of the maximum speed up achieved by an 

application. Understanding the type of scaling that is applicable in any application is vital in 

estimating the speed up. All the applications that are mentioned here exhibit scaling. An instance 

of this phenomenon is shown in Figure 1. One can observe that for a fixed problem size, increase 

in the number of processing elements, the time of execution decreases.  

 

Fig. 1. Plot of execution time against number of processing elements. 

   

 

Fig. 2. RMSE(root mean square error) of the resulted image with respect to original image against 

Number of iterations 
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Quality Test.  

We performed the quality test for the image by visual inspection and RMSE (root mean square 

error) values obtained from all the implementations. We have tested the comparisons between the 

serial code, multi-core and CUDA when applied on a CT scan image with Gaussian noise with 

standard deviation * = 35. The RMSE values of the images resulted from multi-core and GPU 

implementations are 13.2, which is closer to serial result. We observed that quality was 

maintained with out any visually plausible differences. For all the experiments, the initial 

estimates are given by the classical kernel regression method. Different experiments that were 

performed are:  

 

Denoising Experiment.  

Well known Lena image of 512 × 512 size and a picture of a pirate with 1024 × 1024 size were 

consideration for testing. Controlled simulated experiment was set up by adding white Gaussian 

noise with standard deviation of * = 25 to both the images. We set global smoothing 

parameter ℎ = 2.4. The choice of number of iterations was set after careful analysis of the 

behavior of the application. The graph in the Figure 2, indicates that RMSE (root mean square 

error) values of the resulted image drop till a point and then it raises. This point was observed to 

be 12 for this application. In this way, a limit for the number of iterations is deduced for all the 

mentioned images. The RMSE values of the resulted images are 6.6426 and 9.2299.  

 

Clearly, the dominance of the GPU performance over multi-core can be evidently seen in Figure 

3(a). The multi-core code was run with 12 Matlab workers and as expected a near 10x 

performance is achieved for image size 1024 × 1024. The slack is possibly due to the 

communication overhead of the function calls performed by Matlab.  

 

 

 
 
Fig. 3. Comparison of various algorithms: (a) Speedup factors against image sizes for the denoise 

application. (b) Speedup factors against image sizes for the compression artifact removal. (c) 

Speedup factors against image sizes for the upscaling.  

 

Compression artifact removal.  

Pepper image was considered for this experiment and compressed it by Matlab JPEG routine with 

a quality parameter 10 and RMSE of 9.76. The number of iterations and ℎ were set to 10 and 2.4. 

RMSE values for single core version is 8.5765, multi-core version is 8.5759 and that of GPU is 
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8.5762. The performance is shown in Figure 3(b). The multi-core code has a average speed up 

factor of 6x over serial implementation whereas GPU has speed up of 20x.  

 

Upscaling.  

We performed an upscale operation on the lena image and on the pirate’s picture. The 

performance is noted in the Figure 3(c). In this case, the GPU performance is achieved to be 

significantly higher than the multi-core. The arithmetic intensity is high for this application as 

each thread needs to estimate more number of pixels in the target image, precisely 4 (the 

upsampling factor).  

 

Kernel Timing Results.  

Table I presents the runtime measurements of the kernels in single core, multi-core and GPU for 

different image sizes. The timings given for GPU code also include the data transfer time from 

host to GPU memory and vice-versa. The GPU code maintains the efficiency even with the 

increase in the image size. The GPU version of classic kernel has achieved a factor of 175x over 

the serial implementation.An improvement factor of 75x was observed for steering kernel.   

 

Table 1. Kernel execution timings(in seconds) 

   Image size Regression       

method 

   Single core  Multi-core   GPU  

512x 512   Classic kernel  11.765  1.765   0.067 

512x 512   Steering kernel  105.140   18.200   1.470 

  1024x 1024   Classic kernel  47.741   6.930   0.270 

  1024x 1024   Steering kernel  427.701   102.234   5.819  

  

4.2 QUALITATIVE IMPROVEMENT 

 
The proposed algorithm has been compared with the algorithm proposed by Takeda et al. We 

found that by incorporating an additional post processing module based on median filter(in which 

the spurious edges are suppressed)into the Takeda algorithm, the proposed algorithm is giving 

better than the original algorithm. Both the algorithms have been applied on Lena gray scale 

image. The image is corrupted by Gaussian noise with standard deviation of 15, 25, 35 and 45 

and then algorithms have been applied to denoise them. As shown in the figure, the error obtained 

in the proposed algorithm is less than that of the Takeda’s algorithm. In our algorithm we have 

used threshold value as 1% of the maximum edge strength. We have used median over a 

neighbourhood of 1 pixel distance in fixing the value corresponding to spurious edges.  

 

The RMSE value reaches a minimum after some iterations. Graphs corresponding to different 

images after different iterations is presented in Figure 4. 
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In denoising the Lena image with Gaussian noise = 15, Takeda’s algorithm reached RMSE of 

6.3917 while our algorithm reached 6.386. Both of them reach their minimum RMSE value in 8&� 

iteration and it is shown in Figure 4(a).  

 

In denoising the Lena Image with noise of 25, Takeda’s algorithm reached 7.8935 while our 

algorithm reached 7.8778. Both of them reach their minimum RMSE value in 9&� iteration and it 

is shown in Figure 4(b). 

 

In denoising the Lena Image with noise of 35, Takeda’s algorithm reached 9.2702 while our 

algorithm reached 9.2059. Both of them reach their minimum RMSE value in 18&� iteration and 

it is shown in Figure 4(c). 

 

Finally, in denoising the Lena Image with noise of 45, Takeda’s algorithm reached 10.823 while 

our algorithm reached 10.822. They reached their minimum RMSE value in 18&� iteration and it 

is shown in Figure 4(d). 

 

We have shown the results of denoising the Lena Image with noise 35 in the Figure 5. Figure 5(a) 

denotes the original Lena image. Figure 5(b) is the Lena image with a Gaussian noise of 35.  

 

Figure 5(c) gives us the suppressed edges, the edges which have been suppressed by the proposed 

algorithm.  

 

 
4(a) 

4(b) 
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Fig. 4. Comparison of Our Median Based Parallel Steering Kernel Regression Technique

Takeda’s Original algorithm on Lena image with Gaussian noise of (a)15 (b)25 (c)35 (d)45.

 

                                     5(a)                      

 
Fig. 5. Comparison of our algorithm to Ste

Lena image with Gaussian noise of 35. (c) Suppressed spurious edges
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4(c) 

 

4(d) 

 

Median Based Parallel Steering Kernel Regression Technique

Takeda’s Original algorithm on Lena image with Gaussian noise of (a)15 (b)25 (c)35 (d)45.

 
5(a)                               5(b)                               5(c) 

Comparison of our algorithm to Steering Kernel Regression. (a) Original Lena image. (b) 

Lena image with Gaussian noise of 35. (c) Suppressed spurious edges 
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Median Based Parallel Steering Kernel Regression Technique with 

Takeda’s Original algorithm on Lena image with Gaussian noise of (a)15 (b)25 (c)35 (d)45. 

 

ering Kernel Regression. (a) Original Lena image. (b) 
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5. CONCLUSIONS AND FUTURE WORK 

Steering kernel regression is indeed an innovative work in image reconstruction. This algorithm 

was successfully parallelized on both multi-core, GPU platforms using Matlab and CUDA. 

Implementations for different applications with varying parameters have been evaluated. From 

the observations, it is clearly evident that the time complexity of steering kernel has been 

reduced. On an average, a gain of 6 × and 21 × speed-up was achieved on the multi-core and 

GPU platforms respectively. Also an additional post processing module, based on median filter, 

has been introduced for the purpose of suppressing the spurious edges. This improvement has 

given better results than the original algorithm. 

 

In future, this work could be extended to video data. All the image datasets considered here fit 

within the limits of GPU memory. Computing Steering Kernel regression on single GPU may not 

be scalable to larger images, as the on-board memory of GPU is a major constraint. Thus, 

parallelizing the algorithm for multiple GPUs may lead to better results.  
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