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ABSTRACT 

 

Computer vision approaches are increasingly used in mobile robotic systems, since they allow 

to obtain a very good representation of the environment by using low-power and cheap sensors. 

In particular it has been shown that they can compete with standard solutions based on laser 

range scanners when dealing with the problem of simultaneous localization and mapping 

(SLAM), where the robot has to explore an unknown environment while building a map of it and 

localizing in the same map. We present a package for simultaneous localization and mapping in 

ROS (Robot Operating System) using a monocular camera sensor only. Experimental results in 

real scenarios as well as on standard datasets show that the algorithm is able to track the 

trajectory of the robot and build a consistent map of small environments, while running in near 

real-time on a standard PC. 
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1. INTRODUCTION 
 

In several application scenarios mobile robots are deployed in an unknown environment and they 

are required to build a model (map) of the surroundings, as well as localizing therein. 

 

Simultaneous localization and mapping (SLAM) applications now exist in a variety of domains 

including indoor, outdoor, aerial and underwater and using different types of sensors such as laser 

range finders, sonars and cameras [4]. Although, the majority of those approaches still rely on 

classical laser range finders, the use of vision sensors provides several unique advantages: they 

are usually inexpensive, low-power, compact and are able to capture higher level infor- mation 

compared to classical distance sensors. Moreover, human-like visual sensing and the potential 

availability of higher level semantics in an image make them well suited for augmented reality 

applications. 

 

Visual SLAM approaches are usually divided in two main branches: smoothing approaches based 

on bundle adjustment, and filtering approaches based on probabilistic filters. The latter are 

divided in three main classes: dense, sparse and semantic approaches. Dense approaches ([17], 

[14], [22]) are able to build dense maps of the environment, which make the algorithms more 

robust but at the same time heavy in terms of computational requirements; indeed, most of these 
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approaches are able to work in real-time only when dedicated hardware (e.g., a GPU or FPGA) is 

used. Sparse approaches ([15], [7], [12]) address the problem of computational requirements by 

sparsifying the map; obviously this choice impacts on the robustness of the solution. These 

algorithms require less computational efforts because they try to allocate in memory only the 

most significant key points representing the map; for this reason, they are natural candidates for a 

real time Visual SLAM implementation. Semantic approaches ([10],[20]), extract higher level 

semantic information from the environment in order to build a more robust and compact map. 

 

Parallel Tracking and Mapping (PTAM) was proposed in [15] as a sparse approach based on a 

monocular camera targeted to augmented reality applications. The main idea of PTAM is to 

divide tracking and map updating phases. Camera pose tracking is performed at each time step, 

by comparing the new frame with the current map using feature matching techniques; FAST 

features [18] are used for match- ing. Map updating is performed only on a set of key frames and 

when the current camera position estimation is precise enough. The algorithm requires an 

initialization phase in which the same features are viewed from different points of view. The most 

important limitation of the algorithm is the impossibility to handle occlusions. 

 

A promising solution is the Mono-SLAM algorithm, originally proposed by Davison et al. in [12]. 

In this approach, the map and the camera pose are stored as stochastic variables and the system 

evolution is estimated by an incremental Extended Kalman Filter (EKF). Inverse depth 

parametrization can be used for the representation of point features, which permits efficient and 

accurate representation of uncertainties [16]. By using an approach is known as active search 

paradigm [11], the algorithm is able to speed-up feature matching, since interesting points in the 

each new frame are looked for only in the most probable regions. In addition, the algorithm does 

not need an initialization phase and its probabilistic nature makes it more robust to occlusions. 

The most evident limitation of the algorithm is the fact that, when the map becomes too large, the 

EKF processing phase becomes too computationally heavy to be computed in real- time [21]. 

However, some solutions have been proposed to solve that problem too [13]. 

 

In this work we present an implementation of the Mono-SLAM algorithm using the ROS [3] 

framework. The developed ROS node takes as input the images captured from a monocular 

camera and outputs the trajectory of the camera, as well as a point map representing the 

environment around the robot. The algorithm is able to run in near real-time on a standard PC 

with no dedicate hardware for small and medium length trajectories. The rest of the paper is 

organized as it follows: in Section 2 we briefly recall the formulation of the Mono-SLAM 

problem; in Section 3 we describe our implementation of the algorithm; in Section 4 we show 

experimental results that validate the effectiveness of the approach; finally in Section 5 we draw 

some conclusions and discuss about future extensions of our implementation. 

 

2. PROBLEM FORMULATION 
 

As in classical SLAM approaches based on laser scanners, the robot pose is described as a 

stochastic variable with Gaussian distribution, and the map of the environment is sparse. The 

environment is described by a limited set of features , i.e., measurable geometrical entities 

(points in the case of Mono-SLAM). Features are described as gaussian variables, as well. 
 

The system state , identified by the robot pose and the map, is represented at any time t = 

k∆ t, where ∆ t is the time elapsed since the previous step, as a stochastic variable with 

Gaussian distribution 
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         (1) 
 

having  mean and covariance . 

 

The state vector encapsulates the information on both camera pose and world features 

 

       (2) 

 

Information concerning the camera motion at any instant is encoded in the vector  built as 

       (3) 

 

where the vector  and the quaternion q represent the pose of the camera reference frame C 

while vectors  and  are the linear and angular velocities of C with respect to the world 

reference frame W. 

 

The function used to predict the evolution of the camera state is given by 

 

      (4) 

Where is the quaternion corresponding to the rotation  

 obtained from the axis-angle representation while   and   are the 

noise vectors affecting respectively linear and angular velocities. Features are consider static so 

they do not need a prediction model. 

 

The measurements function necessary to perform the update step of the EKF filter is given by 

 

                     (5) 

 

where the projection function h() is a function able to project a 3D features in the image plane 

using the predicted camera pose. 

 

3. IMPLEMENTATION 
 

The software has been developed using the Robot Operating System (ROS) [3] in C++ under 

Linux. The OpenCV library [1] was used for image processing and the Eigen3 library [2] was 

used for matrix operations. 
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The architecture of the implemented solution is described in Figure 1. Each new frame fk is 

acquired from the camera sensor topic by the capture and preprocess block, which performs some 

preprocessing and feeds the frame to the Mono-SLAM super-block, which is the main block in 

charge of processing the frame in order to reconstruct the camera motion and the map. The output 

of the Mono-SLAM main block at each step is the estimated state of the system, as in equation 

(2). 

 

The feature matching block is in charge of matching, in each new frame, the predicted features 

contained in the set Pʹk∣k − 1 . In order to improve matching k|k−1 performances, we implemented 

an active search technique [11]: candidates for new corresponding features are searched only in 

the most probable areas (which are modeled using ellipsoids), where there is the 99% probability 

of finding them. This block uses information from the predicted measurements and its related 

covariance Sk∣k − 1 in order compute the measurement vector . 

 

When  has been computed, the algorithm performs the standard EKF update and prediction 

steps. The innovation vector  is computed; then the filter performs update 

and prediction steps in order to estimate, respectively, the updated state  with its 

covariance  and the predicted state   with its covariance  In the 

proposed implementation, the update step includes the 1-Point RANSAC algorithm [9] for 

outliers rejection, in order to improve robustness. 
 

Figure 1.  Architecture of the proposed solution. 

 

The patches handler block is in charge of managing the Pk set. In particular, it is used to find the 

best features to track at the very beginning (i.e., when the first frame is being acquired) and to 

delete old features that are no more useful (e.g., when they exit from the frame bounds) and must 

be replaced. More details are reported in Section 3.1. 

 

Blur prediction block is used to predict the motion blur affecting patches when the camera 

undergoes quick motion. Details are reported in Section 3.2. 

 

Note that the  block represents a delay equal to the inverse of the camera frame rate, which is 

used to store predicted information until a new frame has been acquired. 
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3.1. Feature matching 
 

The task of features matching consists in finding correspondences for a set of features when a 

new frame is acquired. Each feature is associated with a descriptor, which will be discussed later 

in this subsection. 

 

Once a new image is acquired, new meaningful features are found and their descriptors are 

computed. Then, correspondences are found between the new features and the features from the 

previous frame. Matching techniques which are fast enough to be used in real-time are usually not 

robust enough for finding correct correspondences. Luckily, using a probabilistic approach gives 

an advantage, since the regions where we look for correspondences can be reduced to the ones 

where the features are more probable to be found. In other words, the search for matches is 

performed in a region around the prediction of the measurements and the size of the region is 

related to the covariance matrix of that features; intuitively, the larger the uncertainty on the 

position of the features, the wider the searching region should be. 

 

In Mono-SLAM, that region is given by projecting the ellipsoid related to the prediction of the 

feature fi in the image plane, where s is a number specifying the size of the region, usually s = 2 

or s = 3, i.e., 95% or 99% of probability of finding the feature. Please note that the size of this 

region is given by s2Si, where Si is the 2 × 2 submatrix of Ss related to the measurements 

estimation of. Hence, the matching is performed on the ellipsoid Si having center in pi and size 

s2Si mathematically described as follows: 

 
 

If the feature can be matched inside this search region, then it is considered as successfully 

matched. The image coordinates zi, denoting the position of the feature in the new frame, are 

appended to the measurement vector  and the feature will contribute towards the correction of 

the estimates mean  and covariance . Otherwise the predicted measurement for  will 

be removed from , since  there is no corresponding measurement in. Subsequently, the 

corresponding rows of are deleted from the Jacobian Hk of vector . This method, known as 

active search, makes the algorithm to be much more robust and it allows also to use very simple 

and fast features descriptors to perform matching. For this reason, in this work a simple patch 

matching techniques was used, as in the original work in [12] . 

 

A patch is defined as a sub image of given dimensions (usually small) extracted from an image 

around a specific pixel. In our work the center of each patch is found by an interest point detector. 

Patch matching requires to find the position of the center of the patch inside the original image, 

i.e., the interest point. The normalized cross correlation operator is the default solution to perform 

patch matching. Given two patches P and Pʹ of the same dimensions, the cross correlation score 

between the two patches is defined as 

 

     (6) 

 

where n is the number of pixels contained in each patch and P̄ and σP2 are respectively mean and 

covariance of the intensity of the pixels of P, defined as 
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Patch matching is performed computing  between the patch to find and each patch having 

center in the search region Si, defined above. The center of the patch which maximize  is 

chosen as best match. 

 

3.2. Blur correction 
 

When the camera motion is very pronounced, patch match- ing could fail due to the amount of 

motion blur affecting the acquired camera frames. To handle motion blur, each patch is pre-

blurred using the speed information contained in the predicted state, and the blurred patches are 

used to perform matching. Unlike alternative solutions that restore the whole image in order to 

handle blur, this solution uses the Mono- SLAM paradigm in order to reduce computational 

efforts, by applying blur prediction only to few patches instead of the whole image. More details 

on the implementation of this approach are reported in a previous work [19]. 

 

3.3.1-Point RANSAC 
 

1-Point RANSAC algorithm for EKF filters has been originally proposed in [9]. The algorithm is 

composed by two parts: the first one is in charge of selecting low-innovation inliers, while the 

second one selects high-innovation inliers. Low-innovation inliers are selected by executing 

RANSAC using a single feature (point) to generate hypotheses and select the best consensus set. 

Unlike classical RANSAC algorithm, the hypotheses are generated using also information given 

by the EKF filter: new hypotheses are generated by performing EKF update on the selected points 

only. Then, a consensus set is created by collecting all measured points which lay inside a certain 

probability ellipsoid (given by a threshold) centered in the predicted measurements obtained from 

the computed hypothesis. 

 

Low-innovation inliers are elements of the consensus set of the best hypothesis after RANSAC 

execution. They are assumed to be generated by the true model since they are at a small distance 

from the most supported hypothesis. The remaining points could be both inliers and outliers, even 

if they are far from the supported hypothesis. This is due to the fact that the point chosen to 

generate the best hypothesis could not contain all the information needed to correctly update the 

state. For instance, it has been explained that distant points are useful for estimating camera 

rotation, while close points are needed to estimate translation. In the RANSAC hypotheses 

generation step, a distant feature would generate a highly accurate 1-point hypothesis for rotation, 

while translation would remain inaccurately estimated. Other distant points would, in this case, 

have low innovation and would vote for this hypothesis. But as translation is still inaccurately 

estimated, nearby points would presumably exhibit high innovation even if they are inliers. 

 

High-innovation inliers are selected after a partial EKF update step involving only the low-

innovation inliers selected by RANSAC. After this partial update, most of the correlated error in 

the EKF prediction is corrected and the covariance is greatly reduced. This high reduction will be 

exploited for the recovery of high-innovation inliers: as correlations have weakened, consensus 

for the set will not be necessary to compute and individual compatibility will suffice to discard 

inliers from outliers. For each point discarded by the RANSAC algorithm, we check if it is 

individually compatible by verifying whether it lies in a fixed-sized (multiple of its covariance) 
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probability region or not. If the check is passed, the point is added to the high-innovation inliers 

set. After that all points are checked, a second update involving the high-innovation inliers is 

performed. 

 

3.4. Inverse depth coding 
 

In order to tackle the problem of features initialization and features at infinity, in an alternative 

representation was proposed called inverse depth, which represents each feature with six 

parameters 

                    (7) 

where is the optical center of the camera the first time the feature is 

observed, θ and ϕ are respectively azimuth and elevation of the feature with respect to the image 

coordinate system and ρ = 1 / d is the so-called inverse depth of  where d is the distance of the 

feature from the optical center the first time it is observed. The 3D position of the features in W 

can be computed as 

         (8) 

 

        (9) 

 

The advantage of using inverse depth encoding is that it allows to compute a normalized vector   

parallel to so defined 

        

                           (10) 

which is computable also in cases of features at infinity, i.e., with ρ → 0. Note that inverse depth 

features can not represent point with zero depth, because this implies ρ → ∞. This is not a 

problem because a features with zero or very small depth implies a real point coincident or very 

near to the camera optical center, i.e., inside the optics of the camera. 

 

4. ROS IMPLEMENTATION DETAILS 
 

The algorithm has been fully implemented in ROS as a node called Mono- SLAM. The node 

subscribes to an image topic containing the video stream coming from a video camera (in our 

work the topic is published by camera1394 or gscam ROS nodes). The full source code for our 

implementation will soon be available online on the repository of our laboratory
1
. 

 

The Mono-SLAM node publishes a set of topics which are the camera pose, the camera 

trajectory, the reconstructed point-map. Other topics which are useful for debugging purposes are 

the image frames showing the tracked features as well as their state (new, normal, discarded by 

RANSAC), and the covariances of all features. The topics can be visualized using the rviz ROS 

node. Figure 2 shows the different subscribed and published topics. 

                                                
1https://github.com/rrg-polito 
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Some examples of the node in action are shown in Figure 3 and 4. Figure 3 shows some frames 

elaborated by the algorithm. Several information are given: 

 

 
 

 Figure 2. ROS graph of the developed solution. 

 

 
Figure 3. Examples of the algorithm in action. Positions of the patches are shown in each frame, as well as 

the ellipsoids that represent their predicted positions in the next frame. (a) shows a standard frame. 

(b) shows the 1-Point RANSAC algorithm working: blue patches are low-innovation inliers, green patches 

are high-innovation inliers and red patches are rejected measurements. (c) shows enhances prediction. 

 

correctly matched patches are shown by blue rectangles, features selected as low- innovation 

inliers are shown as blue points, features selected as high-innovation inliers are shown as green 

points, features which are discarded by the 1-point RANSAC algorithm are shown as red points 

and finally the high probability region in which each feature should lie in the next frame is 

marked by an ellipse. Moreover, Figure 4 shows some examples of the visual output provided by 

rviz ROS node. The camera trajectory and the reconstructed map are shown. Each 3D feature is 

shown together with its covariance ellipsoid. The green covariance refers to features in inverse 

depth coding while the red ones refer to features in Euclidian representation. Please note that, due 

to limits of rviz, the covariance of the inverse depth features is represented by projecting the 

features in the Euclidian space, i.e., always as an ellipsoid, instead of correctly representing that 

covariance in the inverse depth space, i.e., with a conic shape. 
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Figure 4. Output from the algorithm can be visualized using the rviz ROS node. (a) shows a screenshoot of 

the complete rviz environment: camera image with detected features is shown at the bottom-left, while in 

the main area the resulting 3D map is shown as well as the camera pose and its trajectory (in green). 

(b) shows the visualization of the ellipsoids representing the covariance on the pose of the features in 3D. 

Green ellipsoids are associated to inverse depth features while red ellipsoids to Euclidian features. 

(c) shows a larger map reconstructed by the algorithm. 

 

5. EXPERIMENTAL RESULTS 
 

In order to evaluate the proposed algorithm, experimental tests were carried out using a standard 

monocular camera. Moreover the algorithm has been tested on a standard benchmarking dataset 

for robotic systems. All the experiments have been carried out on a standard PC equipped with an 

Intel i7 3.4 GHz CPU and 4 GB of RAM. 

 

5.1. Hand held camera  
 

We first tested the algorithm using a simple handheld FireWire camera. We tested robustness to 

occlusions by introducing an object (hand) in front of the camera while the algorithm was 

running. Figure 5 shows that the approach is able to reject occluded points and to match them 

correctly again when the occluding object is removed from the scene. 
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Figure 5. Testing robustness to occlusions. (a) The algorithm is working nor- mally. (b) Patches occluded 

by the hand are discarded. (c) The hand is removed from the scene patches are matched again. 

 

In another experiment a moving object (person) is present in the scene. In Figure 6 a person is 

moving in front of the camera. RANSAC is able to rejects moving features, which are not 

matched. Occluded features are also discarded. 

 
Figure 6: Testing robustness to moving objects. In (a) the person starts moving. In (b) feature 25 is rejected 

by RANSAC. In (c) occluded features are removed from the state. 

 

5.2. Rawseeds dataset 
 

We also tested our algorithm on the datasets freely available from the Rawseeds Project [5]. 

These are high-quality multi-sensor datasets, with associated ground truth, of rovers moving in 

large environments, both indoor and outdoor. For each sensor, calibration data is provided. For 

the experiments we used the video stream coming from the front camera of the rover in both 

indoor and outdoor scenarios. 

 

The robot trajectory estimated by our approach was compared with the ground truth available 

from the datasets. The ground truth is composed by the trajectory obtained from a multi-camera 

system and visual tags mounted on the robot , which is not available for the whole length of the 

trajectory, and the estimated trajectory coming from a standard SLAM algorithm based on laser 

scanner sensors; for the outdoor dataset GPS data is used for the ground truth. 

 

For indoor experiments, we used the Bicocca_2009-02-26a dataset
2
, in which the robot is moving 

in an indoor dynamic environment. Some results obtained from this dataset are shown in Figure 7. 

It is possible to note that the algorithm was able to perform with good accuracy on small and 

medium scales (10 or plus meters), while on large scales the trajectory is far from the real one. 

                                                
2http://www.rawseeds.org/rs/datasets/view/6 
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This is due to the fact that the Mono-SLAM algorithm does not explicitly perform loop closing. 

Loop closing only happens when new patches are correctly matched to previous patches, but this 

is difficult after large displacements of the camera. Another issue is that the algorithm is not able 

to correctly measure rotations in some cases. This is due to the lack of significant features in 

some areas (e.g., when facing a wall) or in presence of too many moving objects in front of the 

robot. 

 

For outdoor experiments Bovisa_2008-10-04 dataset
3
 has been used. Also this second experiment 

(see Figure 8) shows that the algorithm works very well on small and medium scales, while on 

large scales the estimated trajectory drifts from the real one, as in the previous experiment. 

 

 

 

 

 

 

 

 

 

 
 

 

 

Figure 7. Results on the Bicocca 2009-02-26a dataset. Note that the small errors on estimated angles as well 

as scale drift both lead to a big difference in the final trajectories. 
 

 

 

 

 

 

 

 

 

 

 

Figure 8: Results on the Bovisa 2008-10-04 dataset. 

 

 

 

 

 

 

                                                
3http://www.rawseeds.org/rs/datasets/view/7 
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6. CONCLUSIONS 
 

We presented a ROS implementation of the Mono-SLAM algorithm. The node is able to run in 

near real-time and is robust enough on small and medium scales to be used for retrieving the 

trajectory of the camera as well as re- constructing a 3D point-map of the environment. It should 

be noted that the performances of the algorithm are heavily influenced by the choice of 

parameters, in particular noise covariances. Moreover, some robustness issues still remain in the 

developed algorithm in the case of highly dynamic environments. Some solutions have been 

implemented in order to improve robustness, and actually the algorithm is able to work in 

dynamic environments and to correctly manage occlusions. Finally, when the camera trajectory is 

large, the computational time increases too much for meeting real-time constraints. 

 

Future work will be devoted to improve the robustness of the approach on larger scales by 

implementing a way to detect and manage loop closings. Moreover, other sensors will be 

included when available, such as accelerometers, magnetometers, gyroscopes, and wheel 

odometry. Finally, more complex applications of the Mono-SLAM algorithm are under 

consideration. These  applications concern a multi- robot extension of the algorithm; integration 

of high-level semantic informations in the algorithm; and an extension of the solution with multi-

camera systems. 
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