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ABSTRACT 

 
This paper introduces a novel approach to novelty detection of every individual sample of data 

in a time series. The novelty detection is based on the knowledge learned by neural networks 

and the consistency of data with contemporary governing law. In particular, the relationship of 

prediction error with the adaptive weight increments by gradient decent is shown, as the 

modification of the recently introduced adaptive approach of novelty detection. Static and 

dynamic neural network models are shown on theoretical data as well as on a real ECG signal. 
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1. INTRODUCTION 

 
In principle, novelty carried through measured samples of data may be evaluated either via 

probability based approaches as exampled in [1] or, via learning system based approaches as in 

the work [2]. The first of these streams, i.e. probabilistic, is represented by the statistical 

approaches of novelty measures and by probabilistic approaches for evaluation of entropy. The 

Sample Entropy (SampEn) and the Approximate Entropy (ApEn) are very typical and very 

relevant examples to be mentioned [3]-[4]. These approaches are closely related to the multi-scale 

evaluation of fractal measures, where further case studies utilizing SampEn, ApEn, and 

Multiscale Entropy (MSE) can be found in [5]-[7]. Further to this, probabilistic entropy approach 

to the concept shift (sometimes the concept drift) detection in sensory data is reported in [8]. The 

second of the mentioned streams is represented by the utilization of learning systems, such as 

neural networks and fuzzy-neural systems, and this is also the main area of focus for the 

presented work in this paper. During the last three decades of 20th century, the works that were 

focused in regards to learning systems are that of [9]-[12], and for incremental learning approach 

can be referenced for example also the work [13]. Then, a particularly focused approach toward 

the utilization of learning systems has been rising with works [14]-[17]. Where, nonlinear 

estimators and learning algorithm were utilized for the fault detection via the proposed utilization 

of a fault function that evaluates behaviour of residuals of a learning system. Currently, 

significant research that shall also be referenced is adaptive concept drift detectors, proposed in 

[18]. Some readers might also see some analogies of the proposed approach in this paper to the 

Adaptive Resonance Theory [19]. Another approach to novelty detection is based on utilization of 

adaptive parameters of incrementally learning models (neural networks), i.e. the Adaptation Plot 
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[20] that has been recently enhanced with multi-scale approach [21]. A most recent method is the 

Learning Entropy, i.e., a multi-scale approach to evaluation of unusual behaviour of adaptive 

parameters of a learning model is introduced in [22]. This paper however introduces another, 

different approach to novelty detection, that is neither based on statistical approaches, nor is it 

based on evaluation of error residual. Contrary to [21], this new approach operates only on 

parameter space of incrementally learning systems, and it does not use the multi-scale approach 

for detection sensitivity. Here the method introduced shows one of the possibilities how to detect 

perturbations within measured data in every new sample.  

 

2. USED METHODOLOGY 

 
The method of detection proposed in this paper, utilises an adaptive prediction model. It is 

interesting to note how promising such method of detection works when used with a static linear 

adaptive model on non-linear data. Thus, for demonstrational purposes of this method, we will 

use a linear based adaptive model. The adaptation technique as applied to the predictive model, is 

based on the classical Gradient Descent algorithm. The employed linear adaptive model initially 

features a vector of random numbers as initial neural adaptive weights, which over each sample, 

are incrementally trained to model the real data, and an input vector comprised from previous 

samples of the real data, as follows;  
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Where, here, w denotes the row vector of all neural weights and x represents the vector of inputs. 

For the scope of this paper, the structure of this input vector for the linear predictive model is as 

follows; 
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Where, x0=1 allows for neural bias in case of the linear predictive model and yr represents 

measured values of the time series. The input vector was chosen to feature ten previous samples 

of the measured time series. Prior to prediction, the input vector was standardized via equation 

(3), in order to acquire better stability of the adaptive algorithm. 
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For further improvement of the model stability, we provide adaptation of the learning rate µ via 

Normalized Least Squares method [23]. The equation (4) describes how this adaptation is 

performed. The Learning Rate adaptation is utilized before calculation of every sample. From 

equation (4) it is obvious that the normalized learning rate is smaller than the default learning rate 

in dependency on input x(k) for every sample; 
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Where, η serves as a substitution for µ For novelty detection estimation in every new sample in 

discrete time k, we use the product of absolute values of the prediction error and adaptive weight 

changes according to equation (5), as follows;  

 ( ) ( ) ( ) ; 0,..,10
i

ND k e k w k i=  × ∆ =    (5) 

Equation (5), thus presents the main principle behind this introduced method of novelty detection 

of every new sample according to temporary system dynamics. This method is simultaneously 

using prediction error and changes of adaptive weights (e(k) and ∆wi(k), respectively). This is the 

main theoretical result of this work. In the following sections we will investigate functionality of 

this method on real and artificial ECG with sampling of 256Hz frequency. 
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3. EXPERIMENTAL ANALYSIS 

 
In this section, we will demonstrate the newly introduced method via computer simulations 

created in programming language Python 2.7 [24].The numerical algorithms were realized via 

python library Numpy [25]. The simulation was performed on a personal computer and was faster 

than real time measuring of an ECG signal. Thus, this justifies that such implementation is 

applicable for online realization. 

 

3.1. Artificial ECG 

 
In this subsection, we will demonstrate usage of the newly introduced method on an artificial 

ECG signal both, with and without noise, before eventually testing on a real ECG signal (of 256 

Hz frequency), in the following subsection. For demonstrational purposes in this section, noise 

was added to the signal to highlight the ability of this introduced method, in detection of 

unexpected samples within the data. Especially where, the predictive model features lower 

prediction accuracy, comparative to data without noise. The reason why we test this method on an 

artificial signal, is to emphasize how well the detection works on perturbed data, if the signal 

doesn’t contain any complicated phenomena. The artificial ECG time series used in our paper was 

created by a serially repeated pattern of a real ECG signal, sampled over one period. Thus, this 

artificial time series is an ideally periodic signal. 

 

 
Figure 1. Novelty Detection used on artificial ECG without noise (for details refer to Figure 2) 
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Figure 2. Details of prediction in areas of introduced perturbations in artificial ECG without noise (blue – 

signal with perturbation, green – predicted signal) 

 

Regarding the length of the pre-training data for the predictive model, we chose to take the first 

2000 samples of the artificial data (ref. Figure 1). For sufficient training, 100 epochs was 

adequate. Figure 2, depicts the details of all perturbations included in the artificial ECG signal 

without noise. The size of the introduced perturbation is 0.03 mV. As we can see on Figure 2, 

these perturbations are small in comparison with the amplitude of the signal. Looking at the 

behaviour of the used predictive model, here we see the model tries to relearn immediately when 

the prediction error and weight adaptation increases (Figure 1). The return of the predictive model 

to previous prediction accuracy takes approximately 20 following samples. In Figure 1, it is 

possible to see the prediction error in specific places of a single period. These errors are caused 

by insufficient prediction ability of the simple, linear predictive model. Furthermore, in Figure.1, 

these errors are not detected as new data by the applied novelty detection method. Figure 3, 

shows the simulation of the artificially created ECG with the addition of noise. Here again, three 

perturbations were introduced to the data. These perturbations are located on the same positions 

as the signal without noise. This introduced noise was implemented via a generator of pseudo-

random numbers, composed as a vector of random numbers in range from 0 to 0.01, added via the 

following equation (6); 

 

 ( ) ( ) , 0,0.01 , 1000,4000,6000r ry k y k rand rand k= + ∈ 〈 〉 = . (6) 

 

Figure 3 displays the real signal together with the simulated. Here in the first graph, it is possible 

to see the difference between the signals within the region of peaks of the amplitude. For the used 

predictive model, it is much more difficult to learn the pattern of the signal with added noise in 

comparison to that without noise. The errors and absolute values of the weight increments (Figure 

3) are not entirely dependent on the periodicity of the signal. In the plot of error on Figure 3, it is 

not possible to see the perturbations clearly, as in the plot of prediction error without noise on 

Figure 2. In the graph of absolute error of weight increments, we can more evidently see the 

location of the perturbations. On the graph of novelty detection (Figure 3) the perturbation 

locations are even more evidently seen and, this is because a huge part of the models periodic 
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errors, are filtered. Furthermore, these errors have no impact on the detection of unexpected 

samples in the data.  

 

 
 

Figure 3. Novelty Detection used on artificial ECG with noise (details on Figure 4) 

 

 
 

Figure 4. Details of prediction in areas of introduced perturbations in artificial ECG with noise (blue – 

signal, green – predicted signal) 

 

Figure 4 shows the details of three perturbations included into the artificial signal containing 

noise. Here, it is clearly shown that the prediction error of the signal with noise and also in the un-
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perturbed section of the signal, could reach substantially high values. The adaptive model again 

immediately reacts to the introduced perturbation and tries to relearn the data signal. The time in 

which the model needs for regaining normal accuracy after meeting a perturbation is hard to 

estimate, because the prediction error is strongly dependant on the level of noise present in the 

data.  

 

3.2. Real ECG Signal 

 
In this paper we also demonstrate the introduced method on an ECG signal. The used time series 

was measured by an internal cardio-defibrillator with 256Hz frequency (the measured data was 

obtained courtesy of [26]). This signal was chosen because it contains spontaneous ventricular 

tachycardia, which is a rare phenomenon to measure. In this subsection, this introduced method of 

novelty detection will be demonstrated via a real ECG signal, which features a healthy, sinus like 

structure followed, by a ventricular tachycardia (arrhythmia). Later, we will show that this 

technique works in both in the sinus like region and also in the arrhythmic region of this signal. 

For demonstration, we will choose the same linear neural unit as the one previously used for 

prediction of the artificial ECG signal. The size of data chosen for learning of the predictive 

model is 1000 samples. In order to achieve sufficient pre-learning of the used neural unit with 

such amount of data, less than 500 epochs is adequate for achieving optimal results. Using any 

larger size of epochs doesn’t seem to significantly improve the accuracy. Figure. 5 clearly depicts 

which part is the healthy ECG signal and which part represents the arrhythmia. In the introduced 

novelty detection, it is possible to detect the start of the arrhythmia signal, approximately 1000 

samples before the arrhythmia is introduced (the shape of the period before the arrhythmia looks 

the same, but the scale of amplitudes starts varying). In the first graph of Figure 5, we can see 

how the measured signal is practically equivalent with the predicted signal. The included 

perturbations are not clearly seen in this graph. However, these perturbations are located in the 

samples of discreet time 1000, 3000, 5000. On the graph of the prediction error, it is possible to 

see the perturbations quite well and even more so in the graph of absolute values of adaptive 

weights. However, looking on the graph of novelty detection, these perturbations are even more 

evidently pronounced. Moreover, the periodic errors are suppressed in region of the healthy ECG 

and arrhythmia signal. It is important to notice that the suppressing of the periodic error, is not 

that dominant in the onset of arrhythmia, unlike in other parts of the data. On Figure 6, we can see 

the prediction models seem to be quite accurate, but in some parts of the ECG period, there is 

always some small inaccuracy. These inaccuracies are mostly located in the positions of global 

minima’s and maxima’s, for a given period on the measured signal. The included perturbations 

are significantly small in size (0.04 – approximately 2% of the amplitude of healthy ECG signal). 

Furthermore, the adaptive model immediately reacts with re-learning of the ECG data, where by 

achieving the previous model accuracy, takes approximately 5-10 following samples. 
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Figure 5. Novelty Detection used on real measured ECG signal 

 

 
Figure 6. Details of prediction in areas of introduced perturbations in real measured ECG (blue – real 

signal, green – output of neural unit) 
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3. DISCUSSION 
 
As presented in previous chapters, the potentials of this method for novelty detection in 

biomedical signals, is quite promising. For demonstration, we chose a predictive model, which 

was relatively simple by structure. Here, such model was not capable to properly predict the 

measured ECG, yet the introduced novelty detection was able to distinguish the difference 

between prediction error caused by the model insufficiency and prediction error caused by 

novelty in the samples. This method also seems to be highly useful on artificial signals containing 

significant noise, where the model is unable to learn such noise, but can distinguish the noise 

from new phenomena in the measured data. Also on artificial data without noise we can certainly 

note, that novelty detection distinguishes the prediction error from the novelty in data, also with 

even a significantly small, signal perturbation.  

 

 
 

Figure 7. Correlation coefficients between adaptive weight increments and error, for ∆w1 and ∆w9 in the 

artificial ECG signal without noise (upper pair), artificial ECG signal with noise (middle pair) and real 

ECG signal (lower pair) 

 

A further remark may be seen in Figure 7. Where, the correlation coefficients between the 

adaptive weight increments and error, over various samples of lag are analysed. For 
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demonstrative purposes, Figure 7 only includes an analysis over the ∆w1 and ∆w9 adaptive weight 

increments with the error. Here, we may note that in all cases of the corresponding correlation 

coefficients, statistically insignificant correlation between the adaptive weight increments and 

error is seen and the same was observed for all other weight increments. This is justified by the 

notion that the prediction error of the model carries the information about the size of inaccuracy, 

while the adaptive weight increments carry information about how much the model tried to adapt 

on new data. Thus, even when the model error may be high, this may not necessarily be related 

with the adaptive weight increments (for more on this principle, please refer to the works of [20]–

[22]). In case of a high error value, caused by common phenomena (what is out of the models 

capability to learn), novelty detection doesn’t mark those particular samples, because the model 

has already recognized its inability to learn, which also further justifies the functionality of this 

method for novelty detection. 

 

Another remark is in regards to the small time consumption in detection of this newly introduced 

method. This is due to the nature of the model being merely multiplication of values, which was 

calculated during the prediction of the data. Novelty detection doesn’t slow down the process of 

prediction. This fact is a big advantage especially in processing the signal in real time, what could 

be a crucial feature in the case of ECG or other biomedical signals. Furthermore, as we can see on 

the results obtained by application of novelty detection on real ECG (Fig. 5), this technique of 

detection of unexpected data highlights the onset of arrhythmia from the other data. According to 

this method it is possible to see the onset of arrhythmia before it appears in the measured signal or 

prediction error. The first few samples show that there is inconsistency in the data, which appears 

approximately 1000 samples before the start of the arrhythmia signal. This model could be used 

for the detection of arrhythmia after proper optimizing and, it is an objective for further research.  

 

4. CONCLUSION 
 

Unusual behaviour of adaptable parameters and actual prediction error together, establishes novel 

learning-system-based measure of novelty that is introduced in this paper. The method presented 

in this paper is different from other methods and from the methods in [20] & [21], because this 

method is using actual error of the predictive model, together with cognitive information in 

changes of adaptive weights of the model. This is an interesting approach, because the prediction 

accuracy and behaviour of a learning model are not necessarily correlated with each other [21]; 

however, both values together provide us with important information about consistency at every 

sample with temporary system dynamics. These facts are the reason why this and similar models 

of novelty detection are important for future research and development. 
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