

Sundarapandian et al. (Eds) : CCSEA, EMSA, DKMP, CLOUD, SEA - 2014

pp. 39–49, 2014. © CS & IT-CSCP 2014 DOI : 10.5121/csit.2014.4304

STUDY ON PERFORMANCE

IMPROVEMENT OF OIL PAINT IMAGE

FILTER ALGORITHM USING PARALLEL

PATTERN LIBRARY

Siddhartha Mukherjee
1

1
Samsung R&D Institute, India - Bangalore

siddhartha.m@samsung.com / siddhartha2u@gmail.com

ABSTRACT

This paper gives a detailed study on the performance of oil paint image filter algorithm with

various parameters applied on an image of RGB model. Oil Paint image processing, being very

performance hungry, current research tries to find improvement using parallel pattern library.

With increasing kernel-size, the processing time of oil paint image filter algorithm increases

exponentially.

KEYWORDS

Image Processing, Image Filters, Linear Image Filters, Colour Image Processing, Paint

algorithm, Oil Paint algorithm.

1. INTRODUCTION

This document provides an analytical study on the performance of Oil Paint Image Filter

Algorithm. There are various popular linear image filters are available. One of them is Oil Paint

image effect. This algorithm, being heavy in terms of processing it is investigated in this study.

There related studies are detailed in the Section 7.

2. BACKGROUND

Modern days, hands are flooded with digital companions, like Digital Camera, Smart Phones and

so on. Most of the devices are having built-in camera. People now more keen on using the built-in

camera. The computation power of this class of devices is also increasing day by day. The usage

of this handheld devices as camera, overshoot the usage of traditional camera in huge number.

The usage of these cameras has become a common fashion of modern life. This has started a new

stream of applications. Applications include various categories e.g. image editing, image

enhancement, camera extension application and so on. A large group of these applications include

applying different kinds of image filters.

Image filters are of different kinds, with respect their nature of processing or mathematical model.

Some of the image filters are good in execution-time in comparison with others. The execution

40 Computer Science & Information Technology (CS & IT)

time is a very important data, for this category of application development. Oil Paint is one of the

very popular linear image filters, which is very heavy in terms of execution.

3. INVESTIGATION METHOD

A simple windows application is developed to analyse different types of image filters. The

purpose of this windows application is to accept different JPG image files as an input, and apply

different kinds of image filters on to it. In the process of applying image filters the application

will log the processing time. The overall operation of the application is explained here.

3.1. Operational Overview

The application is realised with two primary requirements: input jpg image files and configuration

of image filter parameters. To cater requirements, the application is designed with three major

components: a user interface, a jpeg image encoder-decoder and image filter algorithm.

The user interface is developed with Microsoft’s Win32 programing. The image encoder and

decoder component is designed with Windows Imaging Component, provided by Microsoft on

windows desktop.

The following flowchart diagram shows the operational overview of the test environment. During

this process of testing, the processing time is logged and analysed for the study.

3.2. Implementation Overview

Considering the above workflow diagram, main focus of the current study is done with the

application of image filter (marked as “Apply Image Filter” operation). Other operations are

considered to be well known and do not affect the study. The code snippet below will provide the

clear view of implementation. The user interface can be designed in various ways; even this

Computer Science & Information Technology (CS & IT) 41

experiment can be performed without a GUI also. That is why the main operational point of

interests can be realized with the following way.

Decoder

The interface for decoding is exposed as shown here.

One of the possible ways of implementing the decode interface is provided here

.

Decoder Apply Image

Filter
Encoder

Decoded

Buffer
Processed

Buffer Image

Files

Image

Files

/* ***
 * Function Name : Decode
 * Description : The function decodes an image file and gets the decoded buffer.
 *
 * ***/
HRESULT Decode(LPCWSTR imageFilename, PUINT pWidth, PUINT pHeight, PBYTE* ppDecodedBuffer, PUINT
pStride, PUINT pBufferSize, WICPixelFormatGUID* pWicPixelFormatGUID);

HRESULT Decode(LPCWSTR imageFilename, PUINT pWidth, PUINT pHeight, PBYTE* ppDecodedBuffer, PUINT
pStride, PUINT pBufferSize, WICPixelFormatGUID* pWicPixelFormatGUID)
{
 HRESULT hr = S_OK;
 UINT frameCount = 0;
 IWICImagingFactory *pFactory = NULL;
 IWICBitmapDecoder *pBitmapJpgDecoder = NULL;
 IWICBitmapFrameDecode *pBitmapFrameDecode = NULL;

 do
 {
 /* Create Imaging Factory */
 BREAK_IF_FAILED(CoCreateInstance(CLSID_WICImagingFactory, NULL,
CLSCTX_INPROC_SERVER,

IID_IWICImagingFactory, (LPVOID*)&pFactory))

 /* Create Imaging Decoder for JPG File */
 BREAK_IF_FAILED(pFactory->CreateDecoderFromFilename(imageFilename, NULL,
GENERIC_READ, WICDecodeMetadataCacheOnDemand,
&pBitmapJpgDecoder))

 /* Get decoded frame & its related information from Imaging Decoder for JPG File */
 BREAK_IF_FAILED(pBitmapJpgDecoder->GetFrameCount(&frameCount))

 BREAK_IF_FAILED(pBitmapJpgDecoder->GetFrame(0, &pBitmapFrameDecode))

 /* Get Width and Height of the Frame */
 BREAK_IF_FAILED(pBitmapFrameDecode->GetSize(pWidth, pHeight))

 /* Get Pixel format and accordingly allocate memory for decoded frame */
 BREAK_IF_FAILED(pBitmapFrameDecode->GetPixelFormat(pWicPixelFormatGUID))

 *ppDecodedBuffer = allocateBuffer(pWicPixelFormatGUID, *pWidth, *pHeight,

pBufferSize, pStride))
 if(*ppDecodedBuffer == NULL) break;

 /* Get decoded frame */
 BREAK_IF_FAILED(pBitmapFrameDecode->CopyPixels(NULL, *pStride,

*pBufferSize, *ppDecodedBuffer))

 }while(false);

 if(NULL != pBitmapFrameDecode) pBitmapFrameDecode->Release();
 if(NULL != pBitmapJpgDecoder) pBitmapJpgDecoder->Release();
 if(NULL != pFactory) pFactory->Release();

 return hr;
}

42 Computer Science & Information Technology (CS & IT)

Encoder

The interface for encoding is exposed as shown here.

One of the possible ways of implementing the encode interface is provided here.

/* ***
 * Function Name : Encode
 *

* Description : The function encodes an deocoded buffer into an image file.
 *
 * ***/
HRESULT Encode(LPCWSTR outFilename, UINT imageWidth, UINT imageHeight, PBYTE pDecodedBuffer, UINT
cbStride, UINT cbBbufferSize, WICPixelFormatGUID* pWicPixelFormatGUID);

HRESULT Encode(LPCWSTR outFilename, UINT imageWidth, UINT imageHeight, PBYTE pDecodedBuffer, UINT
cbStride, UINT

cbBbufferSize, WICPixelFormatGUID* pWicPixelFormatGUID)
{
 HRESULT hr = S_OK;
 UINT frameCount = 0;
 IWICImagingFactory *pFactory = NULL;
 IWICBitmapEncoder *pBitmapJpgEncoder = NULL;
 IWICBitmapFrameEncode *pBitmapFrameEncode = NULL;
 IWICStream *pJpgFileStream = NULL;

 do
 {
 /* Create Imaging Factory */
 BREAK_IF_FAILED(CoCreateInstance(CLSID_WICImagingFactory, NULL,
CLSCTX_INPROC_SERVER,
IID_IWICImagingFactory, (LPVOID*)&pFactory))

 /* Create & Initialize Stream for an output JPG file */
 BREAK_IF_FAILED(pFactory->CreateStream(&pJpgFileStream))

 BREAK_IF_FAILED(pJpgFileStream->InitializeFromFilename(outFilename,
GENERIC_WRITE))

 /* Create & Initialize Imaging Encoder */
 BREAK_IF_FAILED(pFactory->CreateEncoder(GUID_ContainerFormatJpeg,
 &GUID_VendorMicrosoft,
 &pBitmapJpgEncoder))

 /* Initialize a JPG Encoder */
 BREAK_IF_FAILED(pBitmapJpgEncoder->Initialize(pJpgFileStream,
WICBitmapEncoderNoCache))

 /* Create & initialize a JPG Encoded frame */
 BREAK_IF_FAILED(pBitmapJpgEncoder->CreateNewFrame(&pBitmapFrameEncode, NULL))
 BREAK_IF_FAILED(pBitmapFrameEncode->Initialize(NULL))

 /* Update the pixel information */
 BREAK_IF_FAILED(pBitmapFrameEncode->SetPixelFormat(pWicPixelFormatGUID))
 BREAK_IF_FAILED(pBitmapFrameEncode->SetSize(imageWidth, imageHeight))
 BREAK_IF_FAILED(pBitmapFrameEncode->WritePixels(imageHeight, cbStride,

 cbBbufferSize, pDecodedBuffer))

 BREAK_IF_FAILED(pBitmapFrameEncode->Commit())
 BREAK_IF_FAILED(pBitmapJpgEncoder->Commit())

 }while(false);

 if(NULL != pJpgFileStream) pJpgFileStream->Release();
 if(NULL != pBitmapFrameEncode) pBitmapFrameEncode->Release();
 if(NULL != pBitmapJpgEncoder) pBitmapJpgEncoder->Release();
 if(NULL != pFactory) pFactory->Release();

 return hr;
}

Computer Science & Information Technology (CS & IT) 43

Application of Image Filter

The image processing algorithm is the subject of study in current experiment. Details of the

algorithms are explained later sections. Following code snippet will explain how the

performances for any simple filter (e.g. oil paint) captured for study. Similar approach is followed

all image filters.

/* ***
 * Utility Macros
 * ***/
#define BREAK_IF_FAILED(X) hr = X; \
 if(FAILED(hr)) { break; } \

HRESULT ApplyOilPaintOnFile (LPCWSTR inImageFile, LPCWSTR outImageFile)
{

 HRESULT hr = S_OK;
 PBYTE pDecodedBuffer = NULL;
 PBYTE pOutputBuffer = NULL;
 UINT decodedBufferLen = 0;
 UINT inImageWidth = 0;
 UINT inImageHeight = 0;
 UINT cbStride = 0;
 WICPixelFormatGUID wicPixelFormatGUID;
 DWORD dTimeStart = 0;
 DWORD dTimeDecode = 0;
 DWORD dTimeProcess = 0;
 DWORD dTimeEncode = 0;
 char sMessage[256] = {0};

 do
 {
 /* --------- Decode. --------- */
 dTimeStart = GetTickCount();

 BREAK_IF_FAILED(Decode(inImageFile, &inImageWidth,
&inImageHeight, &pDecodedBuffer,
 &cbStride, &decodedBufferLen,
&wicPixelFormatGUID))

 dTimeDecode = GetTickCount() - dTimeStart;

 /* Allocate Memory for output. */
 pOutputBuffer = (PBYTE)calloc(sizeof(BYTE), decodedBufferLen);
 if(NULL == pOutputBuffer)
 break;

 /* ------------ Process Image Filter ------------ */
 dTimeStart = GetTickCount();

 BREAK_IF_FAILED(ApplyOilPaintOnBuffer(pDecodedBuffer,

 inImageWidth,
inImageHeight, pOutputBuffer))

 dTimeProcess = GetTickCount() - dTimeStart;

 /* --------- Encode --------- */
 dTimeStart = GetTickCount();

 BREAK_IF_FAILED(Encode(outImageFile, inImageWidth,
inImageHeight, pOutputBuffer,
 cbStride, decodedBufferLen,
&wicPixelFormatGUID))

 dTimeEncode = GetTickCount() - dTimeStart;

 sprintf(sMessage,

"Grey Scale : Width=%d, Height=%d, Time(Decode)=%lu
Time(Process)=%lu Time(Encode)=%lu\r\n",

 inImageWidth, inImageHeight, dTimeDecode, dTimeProcess,
dTimeEncode);

44 Computer Science & Information Technology (CS & IT)

For measuring the time taken for processing, well known standard windows API GetTickCount is

used. GetTickCount retrieves the number of milliseconds that have elapsed since the system was

started.

4. OIL PAINT IMAGE FILTER IN RGB COLOUR MODEL

During this study, the input images are considered to be in RGB model. In this model, an image

consists of two dimensional arrays of pixels. Each pixel of a 2D array contains data of red, green

and blue colour channel respectively.

The Image Filters are basically algorithm for changing the values of Red, Green and Blue

component of a pixel to a certain value.

There are various kinds of Image Filters, available. One of the categories of image filter is linear

image filters. For processing one pixel its neighbouring pixels is accessed, in linear image filter.

Depending upon the amount of access to neighbouring pixels, the performance of linear filters is

affected.

As a part of our analysis we have considered Oil Paint image filter, which is popular but process

hungry.

Histogram based algorithm for Oil Paint

For each pixel, it is done in this way: for pixel at position (x, y), find the most frequently

occurring intensity value in its neighbourhood. And set it as the new colour value at position (x,

y).

The interface for the oil paint algorithm is exposed as follows.

Width

Height

Image represented in the form of 2D

array of pixels of size (Width x Height)

r g b

Image

Filter

Algorithm

R G B

Image represented in the form of 2D

array of pixels of size (Width x Height)

after application of Image Filter

Width

Height

Pixel at (x,y)

If radius is of value ‘R’, then

(2R+1) x (2R +1)

neighbouring pixels are

considered.

Neighbouring pixels are shown

in Grey colour for the pixel at

(x,y) with Radius is 1 as an

example.

240

(x-1, y-1)

240

(x, y-1)

236

(x+1, y-1)

236

(x-1, y)

215

(x, y)

240

(x+1, y)

235

(x-1, y+1)

231

(x, y+1)

218

(x+1, y+1)

1) The right side provides the larger and clear picture of the neighbouring pixels or Radius 1, with respect to

pixel at (x, y). The intensities of the respective pixels are also provided (as an example).

2) The pixels at (x-1, y-1), (x, y-1), (x+1, y) have the maximum occurring intensity i.e. 240.
3) The each colour channel of the pixel at (x, y) is set with an average of each colour channel of 3 pixels

[(x-1, y-1), (x, y-1), (x+1, y)].

Computer Science & Information Technology (CS & IT) 45

Generally bigger images will be captured with higher resolution cameras. Here the radius also

needs to be of higher value to create better oil paint image effect. And this creates more

performance bottleneck.

One of the possible ways of implementing the interface is as follows.

/* ***
 * Function Name : ApplyOilPaintOnBuffer
 * Description : Apply oil paint effect on decoded buffer.
 *
 * ***/
HRESULT ApplyOilPaintOnBuffer(PBYTE pInBuffer, UINT width, UINT height, const UINT intensity_level, const int
radius, PBYTE pOutBuffer);

HRESULT ApplyOilPaintOnBuffer(PBYTE pInBuffer, UINT width, UINT height, const UINT
intensity_level,
const int radius, PBYTE pOutBuffer)
{
 int index = 0;
 int intensity_count[255] = {0};
 int sumR[255] = {0};
 int sumG[255] = {0};
 int sumB[255] = {0};
 int current_intensity = 0;
 int row,col, x,y;
 BYTE r,g,b;
 int curMax = 0;
 int maxIndex = 0;

 if(NULL == pInBuffer || NULL == pOutBuffer)
 return E_FAIL;

 for(col = radius; col < (height - radius); col++) {
 for(row = radius; row < (width - radius); row++) {
 memset(&intensity_count[0], 0, ARRAYSIZE(intensity_count));
 memset(&sumR[0], 0, ARRAYSIZE(sumR));
 memset(&sumG[0], 0, ARRAYSIZE(sumG));
 memset(&sumB[0], 0, ARRAYSIZE(sumB));

 /* Calculate the highest intensity Neighbouring Pixels. */
 for(y = -radius; y <= radius; y++) {
 for(x = -radius; x <= radius; x++) {
 index = ((col + y) * width * 3) + ((row + x) * 3);

 r = pInBuffer[index + 0];
 g = pInBuffer[index + 1];
 b = pInBuffer[index + 2];

 current_intensity = ((r + g + b) *
intensity_level/3.0)/255;
 intensity_count[current_intensity]++;

 sumR[current_intensity] += r;
 sumG[current_intensity] += g;
 sumB[current_intensity] += b;
 }
 }

 index = (col * width * 3) + (row * 3);

 /* The highest intensity neighbouring pixels are averaged out to get the
exact color. */
 maxIndex = 0;
 curMax = intensity_count[maxIndex];

 for(int i = 0; i < intensity_level; i++) {

46 Computer Science & Information Technology (CS & IT)

Experimental Results

The experimental is conducted with images of different size and application of oil paint with

different radius. The following data shows the time of execution with different parameters.

In due course of our investigation, we have observed that the performance of oil paint image filter

increases in greater degree with increasing width, height and radius (i.e. usage of neighbouring

pixel).

More importantly, we have observed most of the high resolution images are captured by more and

more and power camera (i.e. either in high end digital camera or high end handheld devices). For

these kinds of higher resolution photos, as the resolution of the image increases, the radius

parameter needs to be increased to generate Oil Paint effect of an acceptable quality.

5. OIL PAINT IMAGE FILTER BY MICROSOFT PARALLEL PATTERNS

LIBRARY

We have observed, in our previous section of investigation, which time increases with higher

degree with increasing width, height and radius. So we tried to improve the oil paint algorithm by

After application of

Oil Paint Image Filter

Computer Science & Information Technology (CS & IT) 47

using Microsoft Parallel Patterns Library. We have kept the same interface for Oil Paint

algorithm; only we differentiated in the implementation. Following code snippet will provide

clear picture of the implementation using Microsoft PPL.

Experimental Results

The experiment is conducted with same set of images, used for the experiment, mentioned in the

section above. We have also obtained same quality of output with and better performance.

HRESULT ApplyOilPaintOnBuffer(PBYTE pInBuffer, UINT width, UINT height, const UINT intensity_level,
const int radius, PBYTE pOutBuffer)
{
 int tStart = radius;
 int tEnd =(height - radius);

 if(NULL == pInBuffer || NULL == pOutBuffer)
 return E_FAIL;

 parallel_for(tStart, tEnd, [&pInBuffer, &width, &height, &intensity_level, &radius,
&pOutBuffer]
 (int col){
 int index = 0;
 int intensity_count[255] = {0};
 int sumR[255] = {0};
 int sumG[255] = {0};
 int sumB[255] = {0};
 int current_intensity = 0;
 int row,x,y;
 BYTE r,g,b;
 int curMax = 0;
 int maxIndex = 0;

 for(row = radius; row < (width - radius); row++)
 {
 /* This portion of the code remains same, as mentioned above */
 }

 });

 return S_OK;
}

48 Computer Science & Information Technology (CS & IT)

6. COMPARATIVE ANALYSIS OF BOTH APPROACHES

The improvement of the performance in terms of percentage is deduced as [100 * (T1 – T2)/ t1],

where T1 is time required for processing by 1
st
 approach and T2 is the time required for

processing time by latest approach.

7. REFERENCES

From reference [3] the histogram based analysis has been studied. The reference [3] provides the

algorithm for the implementation of oil pain image filter algorithm. The algorithm (mentioned in

reference [3], section ‘Oil-paint Effect’) is implemented, as explained in the section 4 of this

paper. The achieved performance of the algorithm is examined and captured in the section 4 (sub-

section: Experimental Result) here. The result shows high growth of the processing time with

respect to kernel-size. Reference [4] is another reference, where algorithm similar reference [3] is

proposed for implementation. The reference [1] and [2] are used for way of analysis and follow

the broadened scope in this arena of image processing. Reference [5] also proposes algorithm

which are similar in nature with reference [3]. So we can clearly depict algorithms similar to

reference [3] and [5], will face similar performance problem.

8. CONCLUSIONS

As mentioned in section 4 & 7, I have obtained result, which depicts huge growth in processing

time with respect to the increase in kernel size of oil paint image filter. There are various

approaches have been proposed for the betterment of processing performance of the image filter

algorithms. The parallel pattern library is a Microsoft library designed for the use by native C++

developers, which provides features of multicore programming. The current paper conducts study

on improving oil paint image filter algorithm using the Microsoft technology.

By comparing results, as shown in section 6 I conclude that by using Microsoft Parallel Pattern

library 71.6% (average) performance improvement can be achieved for Oil Paint Algorithm. This

study is applicable for similar class of image filter algorithms as well.

Computer Science & Information Technology (CS & IT) 49

There are various similar image filter algorithm, where processing of a single pixel depends on

the values of its neighbouring pixels. In this respect, if the larger neighbouring pixels are

accessed, there are performance issues. The approach mentioned in this paper can be referred for

similar issues.

In future, more well-known or new techniques in conjunction with the current idea can be used

for betterment. Not only in image processing in other dimensions of signal processing as well

similar approach can be tried.

ACKNOWLEDGEMENTS

I would like to thank my organization to provide me the opportunity for conducting this research!

REFERENCES

[1] Dr.G.Padmavathi, Dr.P.Subashini, Mr.M.Muthu Kumar and Suresh Kumar Thakur (2009)

“Performance analysis of Non Linear Filtering Algorithms for underwater images”, (IJCSIS)

International Journal of Computer Science and Information Security. Vol.6, No. 2, 2009

[2] Aaron Hertzmann (1998) “Painterly rendering with curved brush strokes of multiple sizes”,

Proceedings of the 25th annual conference on Computer graphics and interactive techniques. Pages

453-460

[3] Feng Xiao (2000) “Oil-paint Effect”. Spring 2000/EE368 Course Project.

[4] Oil Paint Algorithm[http://supercomputingblog.com/graphics/oil-painting-algorithm/]

[5] P. S. Grover, Priti Sehgal (2004) “A Proposed Glass-Painting Filter”. University of Delhi

/icvgip/2004 / proceedings /cg1.1_109

[6] Parallel Patterns Library (PPL)[http://en.wikipedia.org/wiki/Parallel_Patterns_Library]

Author

Siddhartha Mukherjee is a B.Tech (Computer Science and Engineering) from RCC

Institute of Information Technology, Kolkata. Siddhartha is currently working as a

Technical Manager in Samsung R&D Institute, India- Bangalore. Siddhartha has almost 10

years of working experience in software development. He has previously worked with

Wipro Technologies. He has been contributing for various technical papers & innovations

at different forums in Wipro and Samsung. His main area of work is mobile application developments.

