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ABSTRACT 

 

Time-series classification is widely used approach for classification. Recent development known 

as time-series shapelets, based on local patterns from the time-series, shows potential as highly 

predictive and accurate method for data mining. On the other hand, the slow training time 

remains an acute problem of this method. In recent years there was a significant improvement 

of training time performance, reducing the training time in several orders of magnitude. This 

work tries to maintain low training time- in the range from several second to several minutes for 

datasets from the popular UCR database, achieving accuracies up to 20% higher than the 

fastest known up to date method. The goal is achieved by training small 2,3-nodes decision trees 

and combining their decisions in pattern that uniquely identifies incoming time-series. 
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1. INTRODUCTION 

 
The time-series shapelets classification method was introduced by Ye and Keogh [1] as a new 

type of data mining method, that uses the local features of time-series instead of their global. That 

makes it less sensitive to obstructive noise [1]. This method is successfully applied to a variety of 

application areas benefiting from its short classification time and high accuracy. Despite its 

advantages it has a significant disadvantage- a very slow training time. Current research mostly 

focuses on searching shapelets from all possible combination of time-series derived from a 

dataset [1, 2], keeping the training process relatively slow. A variety of proposals have been 

introduced to reduce the candidate shapelets [1, 2, 4, 5], but training time is still in the range of 

hours for some datasets. A newly introduced method [7] shrinks significantly the training time, 

making the training process to last from portion of a second to several seconds for investigated 45 

datasets from UCR collection [9]. Although, this is the fastest up to date training method as of 

our knowledge, it also maintains high accuracies in compare with other state-of-arts methods [7]. 

In this paper we introduce a new method that reaches higher accuracies compared with the 

method from [7], keeping the training time in observable limits. We tested with 24 datasets from 

[9], the ones with number of classes higher than five. It was found that proposed method 

outperforms in terms of accuracy the method from [7] for most datasets. The achieved training 

time is kept low, varying from several seconds to several minutes, depending on a dataset. High 

accuracy and relatively short training time makes proposed method very competitive to present 

state-of-arts methods, which lack either accuracy or have huge training time.   



174 Computer Science & Information Technology (CS & IT) 

 

The rest of this paper is organized as follows. In section 2 related work is presented. Section 3 

describes the proposed method and gives technical details of its implementation. Section 4 

discusses achieved results. Finally, section 5 summarizes the proposed method and gives ideas 

for further work. 

 

2. RELATED WORK 

 
Shapelet by definition is a sequence of samples that originate from one of the time-series from a 

dataset and maximally represent certain class. The classical method of shapelets discovery, 

known as brute force algorithm [1], employs all possible subsequences from all time-series from 

the train dataset and treat them as candidate shapelets. To test a candidate shapelet how well 

separates two classes A and B, all distances between the candidate shapelet and time-series from 

A and B are formed. These distances are ordered into a histogram and the histogram is 

consecutively split into two parts until the best information gain is achieved. The split point is 

named optimal split distance and distances below it considered to belong to class A, but above it  

to class B. If any other candidate shapelet achieves higher information gain, it is selected as 

shapelet. The process continue until all the candidate shapelets are processed. The method 

requires vast amount of calculation time. First improvements include subsequence distance early 

abandon of calculated distances and admissive entropy pruning based on predicted information 

gain [1]. These improvements reduced the total required time for training, but the reduction was 

not that significant [6]. Another idea based on the infrequent shapelets, prunes the non-frequent 

candidate shapelets [4]. More improvements [2] suggests using of so called logical shapelets, that 

reuse the computation and optimize the search space. Recent approach is based on synthesizing 

shapelets from random sequences, using particle swarm optimization techniques [6]. A new 

development in the area [7], vastly improves the training time of the shapelets by pruning 

candidate segments, which shows similarity in Euclidian distance space. This approach [7] is the 

fastest up to date as of our knowledge and in terms of accuracy is competitive with the current 

state-of-arts methods. We selected this method as a reference to proposed method, aiming to 

achieve similar or better accuracies, maintaining  relatively low training time. 

 

3. PROPOSED METHOD 

 
Our previous research [6] changes the traditional way of producing shapelets by synthesizing a 

shapelet from randomly generated sequences using particle swarm optimization (PSO), instead of 

extracting the shapelets from the original time-series. It finds the shapelet for every pair of classes 

presented in a dataset, then combines them in a decision tree and find the decision tree that 

achieves highest accuracy. Producing the most accurate decision tree requires all possible 

combinations of trees to be tested. That is a slow process for  more than four classes and adds 

additional processing time to traditionally slow training time. For this purpose, only datasets with 

less than five classes were investigated in [6]. Datasets with more than five classes are processed 

with the method introduced in this paper. The proposed method utilizes groups of small (up to 4 

classes) decision trees, instead of building one big decision tree that contains all classes. When a 

time-series comes for classification every present tree produce a decision. The decision path 

taken during classification is present as string of characters. The decision paths from all present 

trees are combined into decision pattern. Every class from the datasets appears to maintain 

unique decision pattern. The patterns from training datasets are kept and when new time-series 

from test dataset comes for classification these patterns are compared with the pattern produced 
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from incoming time-series. The incoming time-series is associated with the class, to which its 

decision pattern mostly match. 

 

3.1. Training  

 
3.1.1. Extracting subsets 

 
The first step of the training process is to extract subsets of classes out of the original dataset, for 

which the decision trees will be defined. It is best to have uniform distribution of class indexes 

into subsets, as it allows non dominant class indexes into the final solution. The maximum 

amount of subsets L is defined as:  

 

 
where, K is the number of all classes in a dataset and n is the number of classes in a subset n = 

2,3,4.   

 
In case the number of classes in the original dataset is relatively high (Fig.1, K = 37), and the 

subsets consists of four classes for example, the final number of possible subsets combinations 

becomes 66045, according (1). That is vast amount of subsets and training all of them will defeat 

the purpose of simplifying the calculations process. Instead of taking all possible combinations 

we can operate with just limited amount of subsets, obeying the rule of uniform distribution of 

class indexes as shown on Fig.1. Taking limited amount of subsets will not always fully obey the 

uniform rule. For example, on Fig.1 most of classes are present 3 times, but class 21, 29 and 30 

are present just two times. Practically, it is enough all class indexes to be present into the subsets 

and the difference between the number of times classes are present to be no more than one. 

 

 
Fig. 1 Extracted subsets of 4-class combinations from a dataset with class indexes [1..37]. 
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3.1.2.Training decision trees 

 

Next step of the training process is to create decision trees for extracted subsets. Method from [6] 

is applied for these subsets as they consist of up to four classes. The method in [6] applies 

Particle Swarm Optimization (PSO) techniques, treating candidate shapelets as a particles, which 

form a swarm. To find a shapelet between two classes A and B, swarm of N-2 candidate 

shapelets is formed. The candidate shapelet represent a random sequence of samples and N is the 

length of the time-series in a dataset. Every such sequence has different length, varying from 3 

(the smallest meaningful shapelet length) up to N. These potential candidates cover the whole 

range of possible shapelets lengths. These candidate shapelets compete to each other to find the 

best solution- a sequence that maximally separates two classes A and B. On every step of the 

process the candidate shapelet changes its values according to the best overall values in the 

swarm and candidates best values so far. The fitness function applies functionality similar to the 

criterions of the brute force algorithm. After calculating the distances between the candidate 

shapelet and time-series from class A and class B, it builds a histogram of distances and calculate 

the possible highest information gain. If currently calculated information gain is bigger than 

information gain assigned so far to the candidate, current values becomes particle’s best values. If 

currently calculated information gain is bigger than information gain of the best candidate 

shapelet, then current candidate shapelet become the best candidate of overall swarm. Iteration 

stops when pre-defined number of iterations is achieved or when best information gain from 

iteration to iteration remains the same.  

 

Described particle searching process is relatively fast, but high number of candidate shapelets 

may slow down the training process in general. For that, two improvements were introduced. 

First, compression of the training data is introduced, which according to [7] will not harm the 

training process, but improves the performance. Second, we introduce the idea that not N-2 

candidate shapelets are required, but only 10 will be enough to compete and find the best shapelet 

among them. As candidate shapelets have different lengths it is important to know which of them 

to remove from the competition. To find the ten most representative shapelets lengths, we extract 

from the training dataset only a few time-series per class and train with them. In this partial 

training process we use N-2 shapelets candidates. The partial training is very fast as just few 

time-series were used, but it shows well which are the most popular shapelets lengths for certain 

subset. Based on these results, we select the 10 most popular shapelets lengths and run the 

process again.   

 

When all pair of classes in a subset have their shapelets discovered, then all possible variations of 

decision trees for this subsets are checked and the one that produces the highest accuracy is 

selected. The accuracy of the decision trees during the training process is checked with time-

series from the training dataset.  

 

3.1.3.Decision patterns 

 
An important term in proposed method is the decision path. The decision path is the path taken 

through the decision tree during decision process. When time-series comes for classification, the 

distance between shapelet and the time-series is calculated. If such distance is higher than the 

optimal split distance associated with the shapelet, the process takes the right branch of the tree, 

if not- the process takes the left branch. When right branch is taken, character “R” is added to the 

decision path, when the left branch is taken, character “L” is added to the decision path. The path 
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length is equal to the tree depth. An example of possible decision paths are shown on Fig.2. To 

form a decision pattern the decision paths from all decision trees are concatenated as shown on 

Fig. 3. For example, if the system consists of 6 decision trees and every tree has two nodes 

similar to that on Fig.2, then one possible variant of decision patterns is {RL,RR,R-,L-LL,RL}. 

During the training process, decision pattern for every time-series from the training dataset is 

collected. These decision patterns are kept and used during the classification process. Keeping the 

decision patterns into memory requires certain amount of memory to be allocated during the 

classification process. For example, “Non.FatalECG.1”[9] dataset contains 1800 train time-series 

and the chosen pattern length  is 836 characters. If we consider that a character is encoded with 1 

byte then required memory during classification process is in the vicinity of 1.5MB. That is 

feasible amount for the modern computers, but may cause difficulties in small embedded 

systems. The direction (“R/L/-”) of the decision path currently requires 1 bytes (8 bits) of 

encoding, but it could be optimized to two bits to reduce the required amount of memory, 

especially in the embedded systems. 

 

 
 

Fig.2 Possible decision paths of the illustrated decision tree obtained after classification of incoming time-

series 

 
Fig.3 Decision pattern, obtained by combining the decision paths from all subsets’ decision trees. 
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3.2.Classification 

 
When time-series from test dataset comes for classification a decision pattern is created for that 

time-series. This pattern is compared with the patterns produced during the training process. 

Comparison process is very simple. The two decision patterns strings are compared character by 

character in place and the comparison coefficients is equal to the number of characters that 

coincide by place and value, divided by the length of the decision string as shown on Fig. 4. After 

all the comparison coefficients are collected we keep only those which are above certain 

threshold of 0.98. The idea of this classification is that time-series from the same class will 

produce similar decision patterns, but decision patterns from different classes will differ a lot. 

The incoming time-series is identified as class to which it has closest decision pattern. In certain 

cases more than one class index show similar pattern to the investigates time-series. In such cases 

the classification process assign the incoming time-series to the class, that has majority of 

decision patterns closest to the incoming time-series decision pattern.   

 

 
Fig. 4 Comparison between decision patterns of two time-series. Six out of ten characters coincide by place 

and value, therefore the comparison coefficients is 6/10 = 0.6. 

 

4. EXPERIMENTAL RESULTS 

 
The project implementation uses C# and .NET Framework 4.0. Time performance measurements 

were produced with a System.Diagnostics.StopWatch .NET class. In our experiments we used a 

PC with the following parameters: CPU: Intel Core i7, 2.4GHz; RAM: 8 GB; 64-bit Windows 7 

OS. We selected datasets from the UCR collection [9] with a number of classes higher than five 

(Table 1) as for datasets with fewer classes applying proposed method is meaningless. Table 1 

shows parameters of the used datasets. We used method from [7] as a reference method. It 

produces the fastest training time as of our knowledge and accuracies that outperform most of 

state-of-arts method for the moment. We downloaded the Java implementation of the proposed 

method from [10] and ran it on the same hardware as proposed method. Reference method 

requires to specify threshold p and aggregation ratio r. We kept these value the same as in [7] to 

maintain the highest accuracy. Table 3 shows the results of both methods in terms of training 

time and accuracies they produce. In 18 out of 24 cases the proposed method outperforms the 

reference method in terms of accuracy, where the improvements vary from 2% up to 23%, where 

in six of these cases the improvement is above 10%. In the rest, 3 cases differ less than 1.0% and 

we consider that both method perform equally in this cases. Only in 3 cases the reference method 

outperform the proposed method in terms of accuracy, but the difference is less than 2%. 

Although the reference method shows better training times, the proposed method maintains an 

observable training time- varying from several seconds up to several minutes (∼15 min. for 

Non.FatalECG.1) for datasets that have long time-series and higher number of time-series in a 

train datasets (uWave.X, uWave.Y, uWave.Z). 

 

Proposed method uses the decision patterns from all time-series in the training datasets thus, in 

some cases the classification process may slow done due to high number of time-series in the 

train dataset (Non.FatalECG.1, Non.FatalECG.2). In some cases the length of the decision pattern 
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could be relatively long (Adiac- 1473, Non.FatalECG.1- 836) which may also influence the 

classification time. To investigate this issue we have measured the averaged classification time 

per time-series. Table 2 represents the results. In the most heavy case (Non.FatalECG.1) when 

the number time-series is 1800 and the decision pattern string length is 836 characters the 

classification time is above 200 milliseconds. The length of the decision pattern may very as 

shown on Table 3. For datasets, such as “Beef”, which consist of 5 classes, the number of subsets 

is limited to 10 when constructed of 3 class indexes or to 5 when constructed of 4 class indexes. 

In this case to achieve better accuracy, combination of all possible trees up to 4 indexes are taken. 

On the other hand, datasets with more class indexes have more varieties to choose from. In the 

case of “50Word” dataset, which contain 50 class indexes, the total amount for combinations for 

two-classes decision tree is 1225. We selected 497 of them based on the principle from 3.1.1 and 

the total length of the decision pattern become 994 characters. Rising the number of characters in 

the decision pattern in all investigated cases increased the accuracy in general. Although, it 

appears that there is certain limit of characters above which the accuracy does not increase and 

even may decrease as shown on Table 4.  

Table 1. Used datasets from UCR database. 

 

Dataset 
Number of 

Classes 

Number of 

time-series 

in the 

train/test 

dataset 

Time-series 

length 

Beef 5 30 / 30 470 

Haptics 5 155 / 308  1092 

OsuLeaf 6 200 / 242  427 

Symbols 6 25 / 995  398 

synthetic. 6 300 / 300  60 

Fish 7 175 / 175  463 

InlineSkate 7 100 / 550  1882 

Lighting7 7 70 / 73  319 

MALLAT 8 55 / 2345  1024 

uWave.X 8 896 / 3582  315 

uWave.Y 8 896 / 3582  315 

uWave.Z 8 896 / 3582  315 

MedicalImages 10 381 / 760  99 

Cricket X 12 390 / 390  300 

Cricket Y 12 390 / 390  300 

Cricket Z 12 390 / 390  300 

FaceAll 14 560 / 1690  131 

FacesUCR 14 200 / 2050  131 

SwedishLeaf 15 500 / 625  128 

WordsS. 25 267 / 638  270 

Adiac 37 390 / 391  176 

Non.FatalECG.1 42 1800 / 1965  750 

Non.FatalECG.2 42 1800 / 1965  750 

50words 50 450 / 455  270 
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Table 2. Averaged classification times produced by proposed method. 

Dataset 
Classification 

Time, [msec] 
Dataset 

Classification 

Time, [msec] 

Beef 0.38 MedicalImages 4.27 

Haptics 1.05 Cricket X 11.48 

OsuLeaf 1.67 Cricket Y 9.07 

Symbols 0.72 Cricket Z 9.07 

synthetic. 1.81 FaceAll 10.06 

Fish 3.97 FacesUCR 3.97 

InlineSkate 4.14 SwedishLeaf 16.03 

Lighting7 2.17 WordsS. 17.75 

MALLAT 2.11 Adiac 64.56 

uWave.X 3.98 Non.FatalECG.1 223.52 

uWave.Y 5.87 Non.FatalECG.2 195.99 

uWave.Z 3.84 50words 66.77 

 

Table 3. Experimental results presenting accuracies and training times of the proposed and reference 

method. 

Dataset 

 

Comp.

Rate 

Proposed method Reference method 

Pattern 

Length 

Train 

Tim

e, 

[sec] 

Accuracy, 

[%] 

Train 

Tim

e, 

[sec] 

Accuracy, 

[%] 

Beef 0.125 70  4.15 52.21 0.05 48.89 

Haptics 0.500 20  70.66 39.39 1.69 34.56 

OsuLeaf 0.125 150  55.84 76.99 0.14 53.31 

Symbols 0.250 150  7.87 94.20 0.05 82.48 

synthetic. 0.250 150  125.58 98.88 0.06 98.44 

Fish 0.250 287  102.51 90.85 0.15 75.05 

InlineSkate 0.125 245  78.57 39.57 0.56 39.88 

Lighting7 0.500 245  42.52 75.79 0.39 65.30 

MALLAT 0.125 280  42.87 92.85 0.10 90.77 

uWave.X 0.250 117  559.22 75.32 4.37 76.45 

uWave.Y 0.250 168  594.66 65.12 3.33 66.72 

uWave.Z 0.125 117  508.93 66.30 1.89 67.48 

Med.Images 0.500 240  139.47 71.27 0.58 67.68 

Cricket X 0.250 471 267.66 77.78 0.61 68.63 

Cricket Y 0.250 408 198.58 79.14 0.50 64.01 

Cricket Z 0.250 414 184.38 75.29 0.66 68.21 

FaceAll 0.500 342 167.02 75.42 1.25 71.63 

FacesUCR 0.500 330 36.97 90.56 0.32 84.61 

SwedishLeaf 0.500 519 342.27 91.14 0.34 85.60 

WordsS. 0.250 600 28.48 65.46 0.29 60.92 
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Adiac 0.500 1473 514.63 73.65 0.27 55.67 

Non.FatalECG.1 0.250 836 878.18 85.01 6.90 80.93 

Non.FatalECG.2 0.125 836  349.32 89.19 4.67 86.34 

50words 0.250 994  58.15 68.79 0.35 68.06 

 

Table 4. Accuracy dependency from decision pattern length for “Lighting7”( 7 classes) dataset. 

Decision Pattern Length (number 

of trees x number of  classes in 

tree ) 

Training Time, [sec] Accuracy, [%] 

21x2 4.09 61.64 

35x3 16.28 71.23 

35x4 30.90 71.68 

35x4 + 35x3 42.52 75.79 

35x4 + 35x3 + 21x2 44.29 73.97 

 

5. CONCLUSION AND FUTURE WORK 

This paper proposes a new method for time-series shapelets classification, which demonstrate 

higher accuracies than produced by fastest known state-of-arts method for most of the 

investigated cases. As well it keeps an observable time for training, varying from several seconds 

to several minutes.  

 

As future work we will focus on improving the training time even further, applying parallel 

processing based calculations (utilizing .NET Parallel.ForEach) that employ all possible 

processor’s cores on certain machine. This technology could be successfully applied on variety of 

places in proposed method where the calculations from current stage are independent from each 

other, namely: iteration steps of the PSO algorithm for shapelets discovery; the  comparison 

between incoming time-series pattern and available decision patterns. 

 
REFERENCES 

 
[1] L. Ye and E. Keogh, “Time series shapelets: a new primitive for data mining,” in Proceedings of the 

15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2009. 

 

[2] A. Mueen, E. Keogh, and N. Young, “Logical-shapelets: an expressive primitive for time series 

classification,” in Proceedings of the 17th ACM SIGKDD International Conference on Knowledge 

Discovery and Data Mining, 2011. 

 

[3] T. Rakthanmanon and E. Keogh, “Fast shapelets: A scalable algorithm for discovering time series 

shapelets,” Proceedings of the 13th SIAM International Conference on Data Mining, 2013. 

 

[4] He1 Q., Dong Z., Zhuang F., Shang T., Shi Z., “Fast Time Series Classification Based on Infrequent 

Shapelets”, 2012 11th International Conference on Machine Learning and Applications, 2012 

 

[5] J. Yuan, Z. Wang, H. Meng, „A discriminative Shapelets Transformation for Time Series 

Classification“, International Journal for Pattern Recognition and Artificial Intelligence, Vol. 28, No. 

6, 2014. 



182 Computer Science & Information Technology (CS & IT) 

 

[6] I. Mitzev, N. Younan, (2015), “Time Series Shapelets: Training Time Improvement Based on Particle 

Swarm Optimization”, 7th International Conference on Machine Learning and Computing, March 

2015 

 

[7] J. Grabocka, M. Wistuba, L. Schmidt-Thieme, “Scalable Discovery of Time-Series Shapelets”, 

arXiv:1503.03238 [cs.LG], March 2015 

 

[8] J. Lines, L. Davis, J. Hills, A. Bagnall, “A Shapelet Transform for Time Series Classification”, 

Proceedings of the 18th ACM  SIGKDD International Conference on Knowledge Discovery and Data 

Mining, 2012 

 

[9] E. Keogh, Q. Zhu, B. Hu, H. Y., X. Xi, L. Wei, and C. A. Ratanamahatana, “The UCR Time Series 

Classification/Clustering Homepage,” www.cs.ucr.edu/~eamonn/time_series_data 

 

[10] J. Grabocka, M. Wistuba, L. Schmidt-Thieme, Source Code and Executables for Scalable Discovery 

of Time-Series Shapelets algorithm, 

https://www.dropbox.com/sh/btiee2pyn6a989q/AACDfzkkpdYPmgw7pgTgUoeYa 

 

[11] P.Senin, S.Malinchik, “SAX-VSM: Interpretable Time Series Classification Using SAX and Vector 

Space model”, Data Mining (ICDM), 2013 IEEE 13th International Conference, 2013 

 

[12] D. Gordon, D. Hendler, L. Rokach, “Fast Randomized Model Generation for Shapelet-Based Time 

Series Classification”, arXiv:1209.5038 [cs.LG], 2012  

 

[13] J. Grabocka, N. Schilling, M.Wistuba, L.Schmidt-Thieme, “Learning Time-Series Shapelets”, 

KDD’14, August 24–27, 2014, NY, USA, 2014 

 

AUTHORS 

 
Ivan  S. Mitzev is currently PhD candidate of Electrical and Computer Engineering at 

Mississippi State University. He received his M.S. degree of Electrical Engineering from 

Mississippi State University in 2010. His research interests include software 

development, pattern recognition and bio-medical signal processing. 

 

Nicolas H. Younan is currently the Department Head and James Worth Bagley Chair of 

Electrical and Computer Engineering at Mississippi State University. He received the 

B.S. and M.S. degrees from Mississippi State University, in 1982 and 1984, respectively, 

and the Ph.D. degree from Ohio University in 1988. Dr. Younan’s research interests 

include signal processing and pattern recognition. He has been involved in the 

development of advanced signal processing and pattern recognition algorithms for data 

mining, data fusion, feature extraction and classification, and automatic target 

recognition/identification.  

 

Dr. Younan has published over 250 papers in refereed journals and conference proceedings, and book 

chapters. He has served as the General Chair and Editor for the 4th IASTED International Conference on 

Signal and Image Processing, Co-Editor for the 3rd International Workshop on the Analysis of Multi-

Temporal Remote Sensing Images, Guest Editor, Pattern Recognition Letters, and JSTARS, and Co-Chair, 

Workshop on Pattern Recognition for Remote sensing (2008-2010). He is a senior member of IEEE and a 

member of the IEEE Geoscience and Remote Sensing society, serving on two technical committees: Image 

Analysis and Data Fusion, and Earth Science Informatics (previously Data Archive and Distribution). He 

also served as the Vice Chair of the International Association on Pattern Recognition (IAPR) Technical 

Committee 7 on Remote Sensing (2008-2010), and Executive Committee Member of the International 

Conference on High Voltage Engineering and Applications(2010-2014).  


