

Jan Zizka et al. (Eds) : CCSIT, SIPP, AISC, CMCA, SEAS, CSITEC, DaKM, PDCTA, NeCoM - 2016

pp. 173–182, 2016. © CS & IT-CSCP 2016 DOI : 10.5121/csit.2016.60116

COMBINED CLASSIFIERS FOR TIME

SERIES SHAPELETS

Ivan S. Mitzev, Nickolas H. Younan

Mississippi State University, Mississippi State, MS 39762
ism6@msstate.edu, younan@ece.msstate.edu

ABSTRACT

Time-series classification is widely used approach for classification. Recent development known

as time-series shapelets, based on local patterns from the time-series, shows potential as highly

predictive and accurate method for data mining. On the other hand, the slow training time

remains an acute problem of this method. In recent years there was a significant improvement

of training time performance, reducing the training time in several orders of magnitude. This

work tries to maintain low training time- in the range from several second to several minutes for

datasets from the popular UCR database, achieving accuracies up to 20% higher than the

fastest known up to date method. The goal is achieved by training small 2,3-nodes decision trees

and combining their decisions in pattern that uniquely identifies incoming time-series.

KEYWORDS

Data mining, Time-series shapelets, Combining classifiers

1. INTRODUCTION

The time-series shapelets classification method was introduced by Ye and Keogh [1] as a new

type of data mining method, that uses the local features of time-series instead of their global. That

makes it less sensitive to obstructive noise [1]. This method is successfully applied to a variety of

application areas benefiting from its short classification time and high accuracy. Despite its

advantages it has a significant disadvantage- a very slow training time. Current research mostly

focuses on searching shapelets from all possible combination of time-series derived from a

dataset [1, 2], keeping the training process relatively slow. A variety of proposals have been

introduced to reduce the candidate shapelets [1, 2, 4, 5], but training time is still in the range of

hours for some datasets. A newly introduced method [7] shrinks significantly the training time,

making the training process to last from portion of a second to several seconds for investigated 45

datasets from UCR collection [9]. Although, this is the fastest up to date training method as of

our knowledge, it also maintains high accuracies in compare with other state-of-arts methods [7].

In this paper we introduce a new method that reaches higher accuracies compared with the

method from [7], keeping the training time in observable limits. We tested with 24 datasets from

[9], the ones with number of classes higher than five. It was found that proposed method

outperforms in terms of accuracy the method from [7] for most datasets. The achieved training

time is kept low, varying from several seconds to several minutes, depending on a dataset. High

accuracy and relatively short training time makes proposed method very competitive to present

state-of-arts methods, which lack either accuracy or have huge training time.

174 Computer Science & Information Technology (CS & IT)

The rest of this paper is organized as follows. In section 2 related work is presented. Section 3

describes the proposed method and gives technical details of its implementation. Section 4

discusses achieved results. Finally, section 5 summarizes the proposed method and gives ideas

for further work.

2. RELATED WORK

Shapelet by definition is a sequence of samples that originate from one of the time-series from a

dataset and maximally represent certain class. The classical method of shapelets discovery,

known as brute force algorithm [1], employs all possible subsequences from all time-series from

the train dataset and treat them as candidate shapelets. To test a candidate shapelet how well

separates two classes A and B, all distances between the candidate shapelet and time-series from

A and B are formed. These distances are ordered into a histogram and the histogram is

consecutively split into two parts until the best information gain is achieved. The split point is

named optimal split distance and distances below it considered to belong to class A, but above it

to class B. If any other candidate shapelet achieves higher information gain, it is selected as

shapelet. The process continue until all the candidate shapelets are processed. The method

requires vast amount of calculation time. First improvements include subsequence distance early

abandon of calculated distances and admissive entropy pruning based on predicted information

gain [1]. These improvements reduced the total required time for training, but the reduction was

not that significant [6]. Another idea based on the infrequent shapelets, prunes the non-frequent

candidate shapelets [4]. More improvements [2] suggests using of so called logical shapelets, that

reuse the computation and optimize the search space. Recent approach is based on synthesizing

shapelets from random sequences, using particle swarm optimization techniques [6]. A new

development in the area [7], vastly improves the training time of the shapelets by pruning

candidate segments, which shows similarity in Euclidian distance space. This approach [7] is the

fastest up to date as of our knowledge and in terms of accuracy is competitive with the current

state-of-arts methods. We selected this method as a reference to proposed method, aiming to

achieve similar or better accuracies, maintaining relatively low training time.

3. PROPOSED METHOD

Our previous research [6] changes the traditional way of producing shapelets by synthesizing a

shapelet from randomly generated sequences using particle swarm optimization (PSO), instead of

extracting the shapelets from the original time-series. It finds the shapelet for every pair of classes

presented in a dataset, then combines them in a decision tree and find the decision tree that

achieves highest accuracy. Producing the most accurate decision tree requires all possible

combinations of trees to be tested. That is a slow process for more than four classes and adds

additional processing time to traditionally slow training time. For this purpose, only datasets with

less than five classes were investigated in [6]. Datasets with more than five classes are processed

with the method introduced in this paper. The proposed method utilizes groups of small (up to 4

classes) decision trees, instead of building one big decision tree that contains all classes. When a

time-series comes for classification every present tree produce a decision. The decision path

taken during classification is present as string of characters. The decision paths from all present

trees are combined into decision pattern. Every class from the datasets appears to maintain

unique decision pattern. The patterns from training datasets are kept and when new time-series

from test dataset comes for classification these patterns are compared with the pattern produced

Computer Science & Information Technology (CS & IT) 175

from incoming time-series. The incoming time-series is associated with the class, to which its

decision pattern mostly match.

3.1. Training

3.1.1. Extracting subsets

The first step of the training process is to extract subsets of classes out of the original dataset, for

which the decision trees will be defined. It is best to have uniform distribution of class indexes

into subsets, as it allows non dominant class indexes into the final solution. The maximum

amount of subsets L is defined as:

where, K is the number of all classes in a dataset and n is the number of classes in a subset n =

2,3,4.

In case the number of classes in the original dataset is relatively high (Fig.1, K = 37), and the

subsets consists of four classes for example, the final number of possible subsets combinations

becomes 66045, according (1). That is vast amount of subsets and training all of them will defeat

the purpose of simplifying the calculations process. Instead of taking all possible combinations

we can operate with just limited amount of subsets, obeying the rule of uniform distribution of

class indexes as shown on Fig.1. Taking limited amount of subsets will not always fully obey the

uniform rule. For example, on Fig.1 most of classes are present 3 times, but class 21, 29 and 30

are present just two times. Practically, it is enough all class indexes to be present into the subsets

and the difference between the number of times classes are present to be no more than one.

Fig. 1 Extracted subsets of 4-class combinations from a dataset with class indexes [1..37].

176 Computer Science & Information Technology (CS & IT)

3.1.2.Training decision trees

Next step of the training process is to create decision trees for extracted subsets. Method from [6]

is applied for these subsets as they consist of up to four classes. The method in [6] applies

Particle Swarm Optimization (PSO) techniques, treating candidate shapelets as a particles, which

form a swarm. To find a shapelet between two classes A and B, swarm of N-2 candidate

shapelets is formed. The candidate shapelet represent a random sequence of samples and N is the

length of the time-series in a dataset. Every such sequence has different length, varying from 3

(the smallest meaningful shapelet length) up to N. These potential candidates cover the whole

range of possible shapelets lengths. These candidate shapelets compete to each other to find the

best solution- a sequence that maximally separates two classes A and B. On every step of the

process the candidate shapelet changes its values according to the best overall values in the

swarm and candidates best values so far. The fitness function applies functionality similar to the

criterions of the brute force algorithm. After calculating the distances between the candidate

shapelet and time-series from class A and class B, it builds a histogram of distances and calculate

the possible highest information gain. If currently calculated information gain is bigger than

information gain assigned so far to the candidate, current values becomes particle’s best values. If

currently calculated information gain is bigger than information gain of the best candidate

shapelet, then current candidate shapelet become the best candidate of overall swarm. Iteration

stops when pre-defined number of iterations is achieved or when best information gain from

iteration to iteration remains the same.

Described particle searching process is relatively fast, but high number of candidate shapelets

may slow down the training process in general. For that, two improvements were introduced.

First, compression of the training data is introduced, which according to [7] will not harm the

training process, but improves the performance. Second, we introduce the idea that not N-2

candidate shapelets are required, but only 10 will be enough to compete and find the best shapelet

among them. As candidate shapelets have different lengths it is important to know which of them

to remove from the competition. To find the ten most representative shapelets lengths, we extract

from the training dataset only a few time-series per class and train with them. In this partial

training process we use N-2 shapelets candidates. The partial training is very fast as just few

time-series were used, but it shows well which are the most popular shapelets lengths for certain

subset. Based on these results, we select the 10 most popular shapelets lengths and run the

process again.

When all pair of classes in a subset have their shapelets discovered, then all possible variations of

decision trees for this subsets are checked and the one that produces the highest accuracy is

selected. The accuracy of the decision trees during the training process is checked with time-

series from the training dataset.

3.1.3.Decision patterns

An important term in proposed method is the decision path. The decision path is the path taken

through the decision tree during decision process. When time-series comes for classification, the

distance between shapelet and the time-series is calculated. If such distance is higher than the

optimal split distance associated with the shapelet, the process takes the right branch of the tree,

if not- the process takes the left branch. When right branch is taken, character “R” is added to the

decision path, when the left branch is taken, character “L” is added to the decision path. The path

Computer Science & Information Technology (CS & IT) 177

length is equal to the tree depth. An example of possible decision paths are shown on Fig.2. To

form a decision pattern the decision paths from all decision trees are concatenated as shown on

Fig. 3. For example, if the system consists of 6 decision trees and every tree has two nodes

similar to that on Fig.2, then one possible variant of decision patterns is {RL,RR,R-,L-LL,RL}.

During the training process, decision pattern for every time-series from the training dataset is

collected. These decision patterns are kept and used during the classification process. Keeping the

decision patterns into memory requires certain amount of memory to be allocated during the

classification process. For example, “Non.FatalECG.1”[9] dataset contains 1800 train time-series

and the chosen pattern length is 836 characters. If we consider that a character is encoded with 1

byte then required memory during classification process is in the vicinity of 1.5MB. That is

feasible amount for the modern computers, but may cause difficulties in small embedded

systems. The direction (“R/L/-”) of the decision path currently requires 1 bytes (8 bits) of

encoding, but it could be optimized to two bits to reduce the required amount of memory,

especially in the embedded systems.

Fig.2 Possible decision paths of the illustrated decision tree obtained after classification of incoming time-

series

Fig.3 Decision pattern, obtained by combining the decision paths from all subsets’ decision trees.

178 Computer Science & Information Technology (CS & IT)

3.2.Classification

When time-series from test dataset comes for classification a decision pattern is created for that

time-series. This pattern is compared with the patterns produced during the training process.

Comparison process is very simple. The two decision patterns strings are compared character by

character in place and the comparison coefficients is equal to the number of characters that

coincide by place and value, divided by the length of the decision string as shown on Fig. 4. After

all the comparison coefficients are collected we keep only those which are above certain

threshold of 0.98. The idea of this classification is that time-series from the same class will

produce similar decision patterns, but decision patterns from different classes will differ a lot.

The incoming time-series is identified as class to which it has closest decision pattern. In certain

cases more than one class index show similar pattern to the investigates time-series. In such cases

the classification process assign the incoming time-series to the class, that has majority of

decision patterns closest to the incoming time-series decision pattern.

Fig. 4 Comparison between decision patterns of two time-series. Six out of ten characters coincide by place

and value, therefore the comparison coefficients is 6/10 = 0.6.

4. EXPERIMENTAL RESULTS

The project implementation uses C# and .NET Framework 4.0. Time performance measurements

were produced with a System.Diagnostics.StopWatch .NET class. In our experiments we used a

PC with the following parameters: CPU: Intel Core i7, 2.4GHz; RAM: 8 GB; 64-bit Windows 7

OS. We selected datasets from the UCR collection [9] with a number of classes higher than five

(Table 1) as for datasets with fewer classes applying proposed method is meaningless. Table 1

shows parameters of the used datasets. We used method from [7] as a reference method. It

produces the fastest training time as of our knowledge and accuracies that outperform most of

state-of-arts method for the moment. We downloaded the Java implementation of the proposed

method from [10] and ran it on the same hardware as proposed method. Reference method

requires to specify threshold p and aggregation ratio r. We kept these value the same as in [7] to

maintain the highest accuracy. Table 3 shows the results of both methods in terms of training

time and accuracies they produce. In 18 out of 24 cases the proposed method outperforms the

reference method in terms of accuracy, where the improvements vary from 2% up to 23%, where

in six of these cases the improvement is above 10%. In the rest, 3 cases differ less than 1.0% and

we consider that both method perform equally in this cases. Only in 3 cases the reference method

outperform the proposed method in terms of accuracy, but the difference is less than 2%.

Although the reference method shows better training times, the proposed method maintains an

observable training time- varying from several seconds up to several minutes (∼15 min. for

Non.FatalECG.1) for datasets that have long time-series and higher number of time-series in a

train datasets (uWave.X, uWave.Y, uWave.Z).

Proposed method uses the decision patterns from all time-series in the training datasets thus, in

some cases the classification process may slow done due to high number of time-series in the

train dataset (Non.FatalECG.1, Non.FatalECG.2). In some cases the length of the decision pattern

Computer Science & Information Technology (CS & IT) 179

could be relatively long (Adiac- 1473, Non.FatalECG.1- 836) which may also influence the

classification time. To investigate this issue we have measured the averaged classification time

per time-series. Table 2 represents the results. In the most heavy case (Non.FatalECG.1) when

the number time-series is 1800 and the decision pattern string length is 836 characters the

classification time is above 200 milliseconds. The length of the decision pattern may very as

shown on Table 3. For datasets, such as “Beef”, which consist of 5 classes, the number of subsets

is limited to 10 when constructed of 3 class indexes or to 5 when constructed of 4 class indexes.

In this case to achieve better accuracy, combination of all possible trees up to 4 indexes are taken.

On the other hand, datasets with more class indexes have more varieties to choose from. In the

case of “50Word” dataset, which contain 50 class indexes, the total amount for combinations for

two-classes decision tree is 1225. We selected 497 of them based on the principle from 3.1.1 and

the total length of the decision pattern become 994 characters. Rising the number of characters in

the decision pattern in all investigated cases increased the accuracy in general. Although, it

appears that there is certain limit of characters above which the accuracy does not increase and

even may decrease as shown on Table 4.

Table 1. Used datasets from UCR database.

Dataset
Number of

Classes

Number of

time-series

in the

train/test

dataset

Time-series

length

Beef 5 30 / 30 470

Haptics 5 155 / 308 1092

OsuLeaf 6 200 / 242 427

Symbols 6 25 / 995 398

synthetic. 6 300 / 300 60

Fish 7 175 / 175 463

InlineSkate 7 100 / 550 1882

Lighting7 7 70 / 73 319

MALLAT 8 55 / 2345 1024

uWave.X 8 896 / 3582 315

uWave.Y 8 896 / 3582 315

uWave.Z 8 896 / 3582 315

MedicalImages 10 381 / 760 99

Cricket X 12 390 / 390 300

Cricket Y 12 390 / 390 300

Cricket Z 12 390 / 390 300

FaceAll 14 560 / 1690 131

FacesUCR 14 200 / 2050 131

SwedishLeaf 15 500 / 625 128

WordsS. 25 267 / 638 270

Adiac 37 390 / 391 176

Non.FatalECG.1 42 1800 / 1965 750

Non.FatalECG.2 42 1800 / 1965 750

50words 50 450 / 455 270

180 Computer Science & Information Technology (CS & IT)

Table 2. Averaged classification times produced by proposed method.

Dataset
Classification

Time, [msec]
Dataset

Classification

Time, [msec]

Beef 0.38 MedicalImages 4.27

Haptics 1.05 Cricket X 11.48

OsuLeaf 1.67 Cricket Y 9.07

Symbols 0.72 Cricket Z 9.07

synthetic. 1.81 FaceAll 10.06

Fish 3.97 FacesUCR 3.97

InlineSkate 4.14 SwedishLeaf 16.03

Lighting7 2.17 WordsS. 17.75

MALLAT 2.11 Adiac 64.56

uWave.X 3.98 Non.FatalECG.1 223.52

uWave.Y 5.87 Non.FatalECG.2 195.99

uWave.Z 3.84 50words 66.77

Table 3. Experimental results presenting accuracies and training times of the proposed and reference

method.

Dataset

Comp.

Rate

Proposed method Reference method

Pattern

Length

Train

Tim

e,

[sec]

Accuracy,

[%]

Train

Tim

e,

[sec]

Accuracy,

[%]

Beef 0.125 70 4.15 52.21 0.05 48.89

Haptics 0.500 20 70.66 39.39 1.69 34.56

OsuLeaf 0.125 150 55.84 76.99 0.14 53.31

Symbols 0.250 150 7.87 94.20 0.05 82.48

synthetic. 0.250 150 125.58 98.88 0.06 98.44

Fish 0.250 287 102.51 90.85 0.15 75.05

InlineSkate 0.125 245 78.57 39.57 0.56 39.88

Lighting7 0.500 245 42.52 75.79 0.39 65.30

MALLAT 0.125 280 42.87 92.85 0.10 90.77

uWave.X 0.250 117 559.22 75.32 4.37 76.45

uWave.Y 0.250 168 594.66 65.12 3.33 66.72

uWave.Z 0.125 117 508.93 66.30 1.89 67.48

Med.Images 0.500 240 139.47 71.27 0.58 67.68

Cricket X 0.250 471 267.66 77.78 0.61 68.63

Cricket Y 0.250 408 198.58 79.14 0.50 64.01

Cricket Z 0.250 414 184.38 75.29 0.66 68.21

FaceAll 0.500 342 167.02 75.42 1.25 71.63

FacesUCR 0.500 330 36.97 90.56 0.32 84.61

SwedishLeaf 0.500 519 342.27 91.14 0.34 85.60

WordsS. 0.250 600 28.48 65.46 0.29 60.92

Computer Science & Information Technology (CS & IT) 181

Adiac 0.500 1473 514.63 73.65 0.27 55.67

Non.FatalECG.1 0.250 836 878.18 85.01 6.90 80.93

Non.FatalECG.2 0.125 836 349.32 89.19 4.67 86.34

50words 0.250 994 58.15 68.79 0.35 68.06

Table 4. Accuracy dependency from decision pattern length for “Lighting7”(7 classes) dataset.

Decision Pattern Length (number

of trees x number of classes in

tree)

Training Time, [sec] Accuracy, [%]

21x2 4.09 61.64

35x3 16.28 71.23

35x4 30.90 71.68

35x4 + 35x3 42.52 75.79

35x4 + 35x3 + 21x2 44.29 73.97

5. CONCLUSION AND FUTURE WORK

This paper proposes a new method for time-series shapelets classification, which demonstrate

higher accuracies than produced by fastest known state-of-arts method for most of the

investigated cases. As well it keeps an observable time for training, varying from several seconds

to several minutes.

As future work we will focus on improving the training time even further, applying parallel

processing based calculations (utilizing .NET Parallel.ForEach) that employ all possible

processor’s cores on certain machine. This technology could be successfully applied on variety of

places in proposed method where the calculations from current stage are independent from each

other, namely: iteration steps of the PSO algorithm for shapelets discovery; the comparison

between incoming time-series pattern and available decision patterns.

REFERENCES

[1] L. Ye and E. Keogh, “Time series shapelets: a new primitive for data mining,” in Proceedings of the

15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2009.

[2] A. Mueen, E. Keogh, and N. Young, “Logical-shapelets: an expressive primitive for time series

classification,” in Proceedings of the 17th ACM SIGKDD International Conference on Knowledge

Discovery and Data Mining, 2011.

[3] T. Rakthanmanon and E. Keogh, “Fast shapelets: A scalable algorithm for discovering time series

shapelets,” Proceedings of the 13th SIAM International Conference on Data Mining, 2013.

[4] He1 Q., Dong Z., Zhuang F., Shang T., Shi Z., “Fast Time Series Classification Based on Infrequent

Shapelets”, 2012 11th International Conference on Machine Learning and Applications, 2012

[5] J. Yuan, Z. Wang, H. Meng, „A discriminative Shapelets Transformation for Time Series

Classification“, International Journal for Pattern Recognition and Artificial Intelligence, Vol. 28, No.

6, 2014.

182 Computer Science & Information Technology (CS & IT)

[6] I. Mitzev, N. Younan, (2015), “Time Series Shapelets: Training Time Improvement Based on Particle

Swarm Optimization”, 7th International Conference on Machine Learning and Computing, March

2015

[7] J. Grabocka, M. Wistuba, L. Schmidt-Thieme, “Scalable Discovery of Time-Series Shapelets”,

arXiv:1503.03238 [cs.LG], March 2015

[8] J. Lines, L. Davis, J. Hills, A. Bagnall, “A Shapelet Transform for Time Series Classification”,

Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data

Mining, 2012

[9] E. Keogh, Q. Zhu, B. Hu, H. Y., X. Xi, L. Wei, and C. A. Ratanamahatana, “The UCR Time Series

Classification/Clustering Homepage,” www.cs.ucr.edu/~eamonn/time_series_data

[10] J. Grabocka, M. Wistuba, L. Schmidt-Thieme, Source Code and Executables for Scalable Discovery

of Time-Series Shapelets algorithm,

https://www.dropbox.com/sh/btiee2pyn6a989q/AACDfzkkpdYPmgw7pgTgUoeYa

[11] P.Senin, S.Malinchik, “SAX-VSM: Interpretable Time Series Classification Using SAX and Vector

Space model”, Data Mining (ICDM), 2013 IEEE 13th International Conference, 2013

[12] D. Gordon, D. Hendler, L. Rokach, “Fast Randomized Model Generation for Shapelet-Based Time

Series Classification”, arXiv:1209.5038 [cs.LG], 2012

[13] J. Grabocka, N. Schilling, M.Wistuba, L.Schmidt-Thieme, “Learning Time-Series Shapelets”,

KDD’14, August 24–27, 2014, NY, USA, 2014

AUTHORS

Ivan S. Mitzev is currently PhD candidate of Electrical and Computer Engineering at

Mississippi State University. He received his M.S. degree of Electrical Engineering from

Mississippi State University in 2010. His research interests include software

development, pattern recognition and bio-medical signal processing.

Nicolas H. Younan is currently the Department Head and James Worth Bagley Chair of

Electrical and Computer Engineering at Mississippi State University. He received the

B.S. and M.S. degrees from Mississippi State University, in 1982 and 1984, respectively,

and the Ph.D. degree from Ohio University in 1988. Dr. Younan’s research interests

include signal processing and pattern recognition. He has been involved in the

development of advanced signal processing and pattern recognition algorithms for data

mining, data fusion, feature extraction and classification, and automatic target

recognition/identification.

Dr. Younan has published over 250 papers in refereed journals and conference proceedings, and book

chapters. He has served as the General Chair and Editor for the 4th IASTED International Conference on

Signal and Image Processing, Co-Editor for the 3rd International Workshop on the Analysis of Multi-

Temporal Remote Sensing Images, Guest Editor, Pattern Recognition Letters, and JSTARS, and Co-Chair,

Workshop on Pattern Recognition for Remote sensing (2008-2010). He is a senior member of IEEE and a

member of the IEEE Geoscience and Remote Sensing society, serving on two technical committees: Image

Analysis and Data Fusion, and Earth Science Informatics (previously Data Archive and Distribution). He

also served as the Vice Chair of the International Association on Pattern Recognition (IAPR) Technical

Committee 7 on Remote Sensing (2008-2010), and Executive Committee Member of the International

Conference on High Voltage Engineering and Applications(2010-2014).

