

Dhinaharan Nagamalai et al. (Eds) : AIS, CSIT, IPPR, IPDCA - 2017

pp. 183– 200, 2017. © CS & IT-CSCP 2017 DOI : 10.5121/csit.2017.71015

DISTRIBUTED KERNEL K-MEANS FOR

LARGE SCALE CLUSTERING

Marco Jacopo Ferrarotti
1
, Sergio Decherchi

1, 2
and Walter Rocchia

1

1
Istituto Italiano di Tecnologia, Genoa, Italy

2
BiKi Technologiess.r.l, Genoa, Italy

ABSTRACT

Clustering samples according to an effective metric and/or vector space representation is a

challenging unsupervised learning task with a wide spectrum of applications. Among several

clustering algorithms, k-means and its kernelized version have still a wide audience because of

their conceptual simplicity and efficacy. However, the systematic application of the kernelized

version of k-means is hampered by its inherent square scaling in memory with the number of

samples. In this contribution, we devise an approximate strategy to minimize the kernel k-means

cost function in which the trade-off between accuracy and velocity is automatically ruled by the

available system memory. Moreover, we define an ad-hoc parallelization scheme well suited for

hybridcpu-gpustate-of-the-art parallel architectures. We proved the effectiveness both of the

approximation scheme and of the parallelization method on standard UCI datasets and on

molecular dynamics (MD) data in the realm of computational chemistry. In this applicative

domain, clustering can play a key role for both quantitively estimating kinetics rates via Markov

State Models or to give qualitatively a human compatible summarization of the underlying

chemical phenomenon under study. For these reasons, we selected it as a valuable real-world

application scenario.

KEYWORDS

Clustering, Unsupervised Learning, Kernel Methods, Distributed Computing, GPU, Molecular

Dynamics

1. INTRODUCTION

Grouping unlabelled data samples into meaningful groups is a challenging unsupervised Machine

Learning (ML) problem with a wide spectrum of applications, ranging from image segmentation

in computer vision to data modelling in computational chemistry [1]. Since 1957, when k-means

was originally introduced, a plethora of different clustering algorithms arose without a clear all-

around winner.

Among all the possibilities, k-means as originally proposed, is still widely adopted mainly

because of its simplicity and the straightforward interpretation of its results. The applicability of

such simple, yet powerful, algorithm however is limited by the fact that, by construction, it is able

to correctly identify only linearly separable clusters and it does require an explicit feature space

(i.e. a vector space where each sample has explicit coordinates).

To overcome both these limitations one can take advantage of the well-known kernel extension of

k-means [2]. Computational complexity and memory occupancy are the major drawbacks of

184 Computer Science & Information Technology (CS & IT)

kernel k-means: the size of the kernel matrix to be stored together with the number of kernel

function evaluations scales quadratically with the number of samples. This computational burden

has historically limited the success of kernel k-means as an effective clustering technique. In fact,

even though the potential of such approach has been theoretically demonstrated, few works in the

literature [3] explore possibly more efficient approaches able to overcome the

�(��)computational cost.

We selected a real-world challenging application scenario, namely Molecular Dynamics (MD)

simulations of biomolecules in the field of computational chemistry. Such atomistic simulations,

obtained by numerical integration of the equations of motion, are a valuable tool in the study of

biomolecular processes of paramount importance such as drug-target interaction [4]. MD

simulations produce an enormous amount of data in the form of conformational frames (i.e. atoms

positions at a given time step) that need to be processed and converted into humanly readable

models to get mechanistic insights. Clustering can play a crucial role in this, as demonstrated by

the success of recent works [1] and by the popularity of Markov state models [5]. We stress the

fact that kernel k-means, without requiring an explicit feature space, is particularly suited for

clustering MD conformational frames where roto-translational invariance is mandatory.

We introduce here an approximated kernel k-means algorithm together with an ad-hoc

distribution strategy particularly suited for massively parallel hybrid CPU/GPU architectures. We

reduce the number of kernel evaluations both via a mini-batch approach and an a priori sparse

representation for the cluster centroids. As it will be clear, such twofold approximation is

controlled via two straightforward parameters: the number of mini-batches � and the sparsity

degree of the centroid representation �. These two knobs allow to finely adapt the algorithm to the

available computational resources to cope with virtually any sample size.

The rest of the paper is organized as follow: in section 2, we briefly review the standard kernel k-

means [2] [6] algorithm. In section 3 our approximate approach is introduced together with a

detailed description of the proposed distribution and acceleration strategy. Section 4 contains the

assessment of both the approximation degree and the performances on standard ML datasets and

a real case MD scenario. A discussion section together with conclusions complete the work.

2. KERNEL K-MEANS

Given a set � of data samples	
 ∈ ℝ , � ∈ [1, �], a non-linear transformation �(
): ℝ → ℝ�

and said �the number of clusters to be found, the kernel k-means algorithms finds a set �of

centroids �� ∈ ℝ�, � ∈ [1, �] in the transformed space, minimizing the following cost function:

 �(�) = ∑ 	!
"# ∑ 	$�"# ∥ �(
) − �� ∥� '((
 , �) (1)

Where (
 is the index of the closest prototype (i.e. the predicted label for sample �-th) obtained

as:

 (
 =)*+,�-� ∥ �(
) − �� ∥� (2)

and '((
 , �) is the usual Kronecker delta.

A Gradient Descent (GD) procedure can be used in order to locally minimize the non-convex cost

Ω(�)starting from an initial set of cluster prototypes �/ = {��,/} so that at the 2-th iteration we

have:

 ��,3 = #
|56,7| ∑ 	!
"# �(
)'((
,3 , �) (3)

Computer Science & Information Technology (CS & IT) 185

where the �-th cluster cardinality is indicated as |��| = ∑ 	!
"# '((
 , �).

A self-consistent update equation can be derived substituting Eq.3 into Eq.1:

(
,38# = argmin� { #

|56,7|? ∑ 	@,A B@,A'((@,3 , �)'((A,3 , �) − �
|56,7| ∑ 	@ B
,@'((@,3 , �)}

= argmin� +�,3 − 2D(
,�),3
 (4)

Where the inner product in the transformed space < �(@), �(A) > was replaced with a generic

Mercer kernel B(@, 	A) = B@,A and where we introduced the cluster compactness and cluster

average similarity respectively defined as:

 +� = #
|56|? ∑ 	@,A B@,A'((@, �)'((A, �) (5)

 D
,� = #
|56| ∑ 	@ B
,@'((@, �) (6)

It is therefore clear that the knowledge of the kernel matrix is sufficient to update the set of

predicted labels up to convergence. Since an explicit form for �()is not known in general, a

medoid approximation can then be used in order to obtain an approximated estimate of the cluster

prototypes:

�G#(��) ≈ ,� = argminIJ∈K ∥ �(L) − �� ∥�

= argminIJ∈KBL,L − 2 #
|56| ∑ 	
 B
,L'((
 , �)

= argminIJ∈KBL,L − 2D
,�
 (7)

As shown in [7], for the linear case, the kind of iterative algorithm described by Eq.4 almost

surely converge to a local minimum, eventually reaching the stopping condition (
,38# =
(
,3 ,				∀� ∈ [1, �].
We conclude this section with a final remark on the cluster compactness and the cluster average

similarity (i.e. Eq.5-6). Indeed a kernel k-means reformulation in term of such quantities was

originally proposed by Zhang and Rudnicky[6] in order to reduce the memory footprint of the

kernel matrix allowing caching on disk. As we are going to show in the next section, the same

formalism can be effectively used to design an efficient distribution strategy.

3. DISTRIBUTED MINI-BATCH KERNEL K-MEANS

We present in this section our contribution: a novel approximation for the kernel k-means

algorithm together with an ad-hoc distribution and acceleration strategy well suited for nowadays

heterogenous High Performance Computing (HPC) facilities.

Remark about the notation used: in the following a superscript eventually identifies a specific

mini-batch quantity, when no superscript is used the quantity has to be intended as a global

quantity. As an example��
 represents the �-th cluster prototype for the �-th mini-batch whereas

�� is the �-th global cluster prototype obtained combining the partial results of every mini-

batches.

186 Computer Science & In

3.1. The Mini-batch Kernel K

Our primary approach to reduce the

consists of splitting the dataset in disjoint mini

procedure can be summarized by these steps

1. Fetch one mini-batch at a time

2. Perform kernel k-means clustering on

initialization technique.

3. Merge together current minibatch results to global results with a proper strategy and go

to step 1.

Fig.1 (a) shows a pictorial description of such algorithm highlighting its

The entire procedure is detailed in the subsequent paragraphs.

Fig.1 (a) Pictorial description of the algorithm. (b) Visualization of two possible sampling strategies to

divide the dataset into mini-batches.

approximation proposed on the number of kernel matrix elements that need to be evaluated.

Mini-batch fetching: The first sensible choice to be made, regards the way in which the dataset is

divided in � disjoint mini-batches of size

consider in the following �
 = !
N

two common reasonable sampling strategies.

A stride sampling strategy can be used when the entire dataset is known beforehand and one

wants to minimize the correlations among samples within the same mini

{	
8�N}, � ∈ [0, !
N − 1].

A block sampling strategy can be used instead to pro

clustering procedure as soon as the first

For the sake of clarity the two different sampling strategies presented are visualized in Fig.

Computer Science & Information Technology (CS & IT)

batch Kernel K-Means

Our primary approach to reduce the �(��) complexity coming from the kernel matrix

splitting the dataset in disjoint mini-batches that are processed one after the other. The

can be summarized by these steps:

batch at a time until all data is consumed.

means clustering on one minibatch and collect results with a proper

current minibatch results to global results with a proper strategy and go

(a) shows a pictorial description of such algorithm highlighting its hierarchical structure.

in the subsequent paragraphs.

(a) Pictorial description of the algorithm. (b) Visualization of two possible sampling strategies to

batches. (c) From left to right we visualize the effect of the

approximation proposed on the number of kernel matrix elements that need to be evaluated.

The first sensible choice to be made, regards the way in which the dataset is

batches of size �
, ∀� ∈ [0, � − 1]. Without loss of generality we will
!
N ∀� ∈ [0, � − 1]. A variety of possibilities arise, we present here

two common reasonable sampling strategies.

A stride sampling strategy can be used when the entire dataset is known beforehand and one

wants to minimize the correlations among samples within the same mini-batch i.e.

A block sampling strategy can be used instead to process a data stream in order to start the

clustering procedure as soon as the first �/ samples are received i.e. �
 = {	
P
Q8�}, �

For the sake of clarity the two different sampling strategies presented are visualized in Fig.

complexity coming from the kernel matrix evaluation

batches that are processed one after the other. The

one minibatch and collect results with a proper

current minibatch results to global results with a proper strategy and go

hierarchical structure.

(a) Pictorial description of the algorithm. (b) Visualization of two possible sampling strategies to

(c) From left to right we visualize the effect of the two fold

The first sensible choice to be made, regards the way in which the dataset is

. Without loss of generality we will

. A variety of possibilities arise, we present here

A stride sampling strategy can be used when the entire dataset is known beforehand and one

batch i.e. �
 =

cess a data stream in order to start the

∈ [0, !
N − 1].

For the sake of clarity the two different sampling strategies presented are visualized in Fig.1(b).

Computer Science & Information Technology (CS & IT) 187

Kernel evaluation and mini-batch initialization: Once a mini-batch is fetched, it is

straightforward to evaluate the mini-batch kernel matrix B
 with a computational cost of �(!?
N?).

Let us now discuss how it is possible to initialize the �-th mini-batch labels. We distinguish two

cases:

� = 0: during the first mini-batch the global cluster medoids have to be selected randomly

or by means of some rational. We propose here to use a kernelized version of the popular

k-means++ initialization scheme, where the medoids are picked at random with a

distribution that maximize the distance among them. The interested reader can read the

work in[8] where such initialization scheme is discussed in detail for the linear case.

� ≠ 0: Starting from the second mini-batch the global cluster medoids S = {,� ≈
�G#(��)} obtained at the end of the previous iterations are used for the initialization.

Simply applying Eq.2 we have:

 (L
 = argmin� [B(L
, 	L
) − 2B(L
 , 	T�)] (8)

Such initialization step automatically allows to keep track of the clusters across different

mini-batches. Indeed the global �-th medoid obtained at the end of the (� − 1)-th iteration

is used as initialization for the same �-th cluster of the �-th mini-batch. This avoids

ambiguity also when the partial mini-batch result has to be merged with the global one.

The mini-batch medoid ,�
 will be combined with the global centroid ,� having the same

index �.

It should be understood that in order to evaluate the second term of Eq.8 one has to

perform additional computations. One has to compute the kernel function for all the pairs

(L
, ,�) where 	L
 belongs to the �-th mini-batch and ,� its a global medoid coming from

the (� − 1)-th mini-batch. Thus, the initialization phase of each mini-batch requires the

evaluation of the corresponding auxiliary kernel matrix BU
 of size
!
N × �.

Mini-batch inner GD loop: Given a mini-batch kernel matrix B
 and an initial set of labels W/
 ,

equations Eq.2-5 are used to perform a GD optimization of the reduced cost function:

 Ω(�
) = ∑ 	I6∈KX ∑ 	$L"# ∥ �(�) − �L
 ∥� '((�
 , Y) (9)

A final set of labels W
 is obtained as a result of such optimization procedure. It is worth stressing

the fact that at this point the set of mini-batch cluster prototypes is not knownin terms of explicit

coordinates, but just in term of membership. As a solution, we propose the medoid approximation

introduced in section 2. Using equation Eq.7, we set the cluster prototypes as:

 ��
 ← �(,�
):				,�
 = arg minIJ∈KX ∥ �(L) − ��
 ∥� (10)

More sophisticated approaches based, for instance, on a sparse representation of cluster centres

are possible (e.g. see [9]). However, the inherent additional computational cost and the

satisfactory results already obtained by means of the simple medoid approximation discouraged

us to further investigate this possibility.

Full batch cluster centres update: We discuss now on how to merge the medoids S
 of the �-th

mini-batch together with the global medoid set S.Let {�� = �(,�} be the global medoids at the

188 Computer Science & Information Technology (CS & IT)

(� − 1)-th iteration of the outer loop and let {��
 = �(,�
)} be the cluster centres for the current �-
thmini-batch. We propose to obtain the resulting global cluster prototypes as a convex

combination of the two:

 �� ← (1 − [)�(,�) + [�(,�
) (11)

Practically, since Eq.11 cannot be evaluated directly, we introduce a second medoid

approximation as already done in the previous paragraph, so that:

 �� ← �(,�):				,� ← arg minIJ∈KX ∥ �(L) − (1 − [)�(,�) − [�(,�
) ∥� (12)

The choice of this convex combination stems from a simple but important observation; in order to

choose the coefficient [let us consider the updating equation for the global cluster center �� at

the second iteration of the algorithm, when the first two mini-batches are merged in a single one

(assuming this is the complete dataset):

�� = #
|56]|8|56̂ | ∑ 	IX∈K]∪K^ �(
)'((
 , �)

= |56]|
|56]|8|56̂ |

#
|56]| ∑ 	IX∈K] �(
)'((
 , �) + |56̂ |

|56]|8|56̂ |
#

|56̂ | ∑ 	IX∈K^ �(
)'((
 , �)
= |56]|

|56]|8|56̂ | ��/ + (1 − |56]|
|56]|8|56̂ |)��#

 (13)

We therefore set [= |56X|
|56X|8|56| so that, if each mini-batch is labelled correctly at the end of the GD

minimization, we retrieve the correct result (i.e. same cluster medoids as for full batch kernel k-

means).

Empty clusters: We close this subsection with a remark about empty-clusters. It is not guaranteed

that along inner loop iterations there will be at least one data sample per cluster. This is a well-

known k-means issue and several strategies to deal with such empty-clusters problem are possible

e.g. randomly pick a new cluster prototype or reducing �. Here we propose the following: if a

given cluster � is found to be empty at the end of the �-th mini-batch iteration then its global

prototype will not be updated. It is worth noting that this kind of strategy is naturally embedded in

the definition of [since for |��
| = 0 we have [= 0 and Eq.11 guarantee the correct behaviour.

3.2. Approximate Mini-batch Kernel K-Means

In the previous paragraph we introduced a simple yet powerful mini-batch approximation which

allowed us to reduce the number of kernel evaluations down to � !
N. Here, we show how we can

further reduce the complexity of the algorithm by means of an a priori sparse representation of the

cluster centroids. This approach was first introduced by Chitta et al. and relies on the simple

observation that the full kernel matrix is required at each iteration of the kernel k-means

algorithm because the clusterscentres are represented as a linear combination of the entire dataset.

However, the number of kernel elements to be evaluated can be drastically reduced if one restricts

the cluster centres to a smaller sub space spanned by a small number of landmarks i.e. data

samples randomly extracted from the dataset. A complete review of such approximation

technique is out of the scope of this work, the interested reader can refer to [3] for further details.

Computer Science & Information Technology (CS & IT) 189

We limit ourselves to illustrate here how we can reformulate the same idea within our algorithm.

In order to do so we simply need to restrict the summation in Eq.3 on the subset �: 	
 ∈ `where

` = {Y/, . . . , Y|b|} is a set of landmarks uniformly sampled from the mini-batch.

 �� = #
c56c ∑ 	
∈b �(
)'((
 , �), � ∈ [1, �] (14)

The self-consistent update equation for the minibatch labels will be:

 (
38# = argmin� [+d(��3) − 2De(
 , ��3)] (15)

where +d(��) and De(
, ��) are the approximate mini-batch clusters compactness and mini-batch

clusters similarity

 +d(��) = #
|567|? ∑ 	@,A∈b B@,A'((@3 , ��3)'((A3 , ��3) (16)

 De(
, ��) = #
|567| ∑ 	@∈b B
,@'((@3 , ��3) (17)

It should be clear from Eq.16 and Eq.17 that the number of kernel evaluations needed to run such

approximated algorithm is now �|`| = �� !
N, where the key parameter � is the fraction of data

used for the cluster centres representation in each mini-batch defined as:

 � = |b|
f � (18)

In Fig.1(c) the reader can visualize the effects that �and � have on the number of kernel elements

that needed to be evaluated in order to iterate the proposed algorithm. As already stated in the

introduction, these two parameters act like knobs that control the degree of approximation of the

procedure with respect to standard kernel k-means. Later, we will discuss on how to pick proper

values for these parameters according to the available computational resources.

3.3. Heterogeneous HPC implementation strategy

We discuss here how the nature of the previously introduced algorithm is particularly suited to be

implemented on both distributed systems and heterogeneous architectures where an accelerator

(e.g. general-purpose GPU) is paired to a CPU.

As already discussed in section 2, the whole iterative procedure to update the set of predicted

labels minimizing the kernel k-means cost function can be expressed in terms of the average

cluster similarity gh, i, ∀h ∈ j, . . . , k
l , i ∈ j, . . . , m − n and the cluster compactness oi∀i ∈

j, . . . , m − n. Both quantities can be expressed as partial summations of kernel matrix elements,

where the elements to be summed are selected according to the labels via p(qh, i). From Eq.6 it

should be clear that the summation to compute the h-th row of g runs just over the h-th row of r,

this naturally suggest us a row wise distribution strategy. Considering a system with s nodes, the

workload is divided so that each node t accounts for the computation of rh,i and gh,u∀i ∈
[j, k

l), h ∈ [t k
ls , (t + n) k

ls), u ∈ [j, m).

The full data distribution scheme is presented in Fig.2(a) and the resulting algorithm is detailed

via pseudo code in Alg.1. The advantage of such approach mainly consists in the reduced

communication overhead. Indeed, for each iteration of the inner loop two communication steps

are sufficient, involving a reduction of the cluster compactness o together with a gathering step

190 Computer Science & In

for the updated labels	v. The kernel matrix elements always reside locally to the node and the

never go through the network.

The memory footprint can be easily computed and amounts to

is the size of variables expressed in Bytes, this is a central quantity because in a real application

scenario once fixed the computational resources i.e. amount of memory available per processor

and the number of processors s
that can be used in order to process the entire dataset:

An upper bound for the message size per node can also be easily given by

however represents a worst-case

each step, instead of communicating just the ones that were actually updated.

The computational complexity of the proposed implementation grows as

dominated by the kernel matrix evaluation step.

to exploit any kernel matrix symmetry because that would have resulted in the impossibility of

pursuing our row-wise data distribution scheme and additionally it would have hin

possibility of using non symmetric similarity functions. Moreover, exploiting the kernel matrix

symmetry would have resulted in a non trivial addressing scheme, unsuitable for the limited

memory addressing capabilities of accelerators such as gen

memory footprint is largely compensated by the approximation strategy in performance terms.

Fig. 2(a) Distribution scheme for the principal quantities needed to complete an inner loop iteration. Each

node holds a set of entire rows for BU
the main steps of an inner loop iteratio

together with a partial + starting from its

reduction step. In the third stage each node uses that information togeth

its slice of W. As a final step an all-to

Computer Science & Information Technology (CS & IT)

. The kernel matrix elements always reside locally to the node and the

The memory footprint can be easily computed and amounts to w(k
ls (k

l + m) + k
l +

sed in Bytes, this is a central quantity because in a real application

scenario once fixed the computational resources i.e. amount of memory available per processor

s, it allows us to compute the minimum number of mini

that can be used in order to process the entire dataset:

�@
A =
?P
x

G(y
x8#)8z(y

x8#)?G{y
x8|

}

An upper bound for the message size per node can also be easily given by w(k
ls

case scenario, where the entire set of labels v are communicated at

each step, instead of communicating just the ones that were actually updated.

The computational complexity of the proposed implementation grows as ~(k
l�

rnel matrix evaluation step. It is worth stressing the fact that we decided not

to exploit any kernel matrix symmetry because that would have resulted in the impossibility of

wise data distribution scheme and additionally it would have hin

possibility of using non symmetric similarity functions. Moreover, exploiting the kernel matrix

symmetry would have resulted in a non trivial addressing scheme, unsuitable for the limited

memory addressing capabilities of accelerators such as general purpose GPUs; this increased

memory footprint is largely compensated by the approximation strategy in performance terms.

(a) Distribution scheme for the principal quantities needed to complete an inner loop iteration. Each

BU, B, D and W. Each node holds a local copy of +. (b) From left to right

the main steps of an inner loop iteration are illustrated. At first, each node is computing its portion of

starting from its B rows and W. Then, the global + is retrieved with an all

reduction step. In the third stage each node uses that information together with its portion of

to-all gathering step spread the updated labels across the network.

. The kernel matrix elements always reside locally to the node and they

�m) where w

sed in Bytes, this is a central quantity because in a real application

scenario once fixed the computational resources i.e. amount of memory available per processor �

, it allows us to compute the minimum number of mini-batches

(19)

ls + �m). This

are communicated at

k�
�s) and it is

It is worth stressing the fact that we decided not

to exploit any kernel matrix symmetry because that would have resulted in the impossibility of

wise data distribution scheme and additionally it would have hindered the

possibility of using non symmetric similarity functions. Moreover, exploiting the kernel matrix

symmetry would have resulted in a non trivial addressing scheme, unsuitable for the limited

eral purpose GPUs; this increased

memory footprint is largely compensated by the approximation strategy in performance terms.

(a) Distribution scheme for the principal quantities needed to complete an inner loop iteration. Each

. (b) From left to right

n are illustrated. At first, each node is computing its portion of D

is retrieved with an all-to-all

er with its portion of D to compute

all gathering step spread the updated labels across the network.

Computer Science & Information Technology (CS & IT) 191

Alg. 1Distributed mini-batch kernel k-means pseudocode for node �.

Starting from this observation we discuss now how the mini-batch structure of the algorithm can

be exploited in order to design an effective acceleration strategy. In the following we will

consider an offload acceleration model where host processor and target device have separate

memory address spaces and communicate via a bus with limited bandwidth (e.g. PCIe) with

respect to the processor-memory standard bus.

The evaluation of a large kernel matrix perfectly fits the massively parallel architecture of

nowadays accelerators therefore it seems a reasonable choice to offload that portion of the

computation. One of the key element for an efficient acceleration scheme however is the

overlapping between the host and the target workload [10], so that a simple strategy where the

CPU and the accelerator are alternatively in idle waiting for each other is not desirable.

Each iteration �-th of the outer loop depends on the previous one, namely the (� − 1)-th, in order

to initialize the set of labels W
. This is what prevents the algorithm to be trivially parallel forcing

to run just one mini-batch per time. However, if one considers the first two steps of each outer

loop iteration i.e. mini-batch fetch �
 and kernel matrix evaluation B
it is clear that they can be

performed independently for each �. We exploit this feature, instructing the target device to

compute the kernel matrix B(
8#)while the host processor executes the inner loop of the algorithm

on the �-th mini-batch.

The offload procedure is detailed in Fig.3; the overall performance gain heavily depends on the

accelerator side implementation of the kernel matrix evaluation which goes outside the scope of

the proposed paper.

input: dataset �; number of clusters �; number of mini-batches �

output: medoidsS

1 for�← 1 to�do

2 �
 ← samples fetched from �	\X��

3 B
(�) ← precompute kernel matrix

4 if� == 0

5 S/← initialize according to kernel k-means++

6 end

7 W
(�)← assigned according nearest neighbor medoid

8 2← 0

9 while W3
 != W38#

10 allgatherW3
 sync

11 +
(�)← compute according to Eq.5

12 D
(�)← compute according to Eq.6

13 allreduce sum+
 sync

14 W38#
 (�)← assign accoding to Eq.4

15 2 ←	2 + 1

16 end

17 S
(�) ← medoid approximation according to Eq.10

18 allreduce min S
 sync

19 S(�) ← (1 − [)S + [S
(�)

20 allreduce min S sync

21 end

192 Computer Science & In

Fig. 3 (a) Pictorial description of the proposed acceleration scheme. The diagram is divided in two parts: a

host processor side on the left, and a target device side on the right. We illustrate how multiple CPU threads

can be used to overlap host and device wor

data fetching from disk, for host-device data transfer and for device control. It instructs the device to

compute the kernel matrix elements needed by the next

available threads cooperate and are responsible for the current

elements provided by the accelerator. In this sense device and host work in a producer

(b) We detailed how a 3-stage pipeline can be used on the device in order to overlap the kernel

with the host to device (H2D) and device to host (D2H)

on the device and the kernel matrix back to host.

4. EXPERIMENTS

We implemented the proposed method and we p

the ML field as well as against a 2D toy dataset in order to better asses both performances and the

degree of approximation. Moreover, we present an applicati

Chemistry realm.

2D Toy: Synthetic dataset containing 4 clusters of 10000 elements in a 2D feature space. Each

cluster is generated by sampling a Gaussian distribution with center and width carefully selected

in order to facilitate its visualization i.e. (

and (σ=[0.2,0,2],µ=[0.25,0.75]) .

MNIST: dataset of handwritten digits

a test set of 30000 samples. 784-

RCV1: Reuters Corpus Volume I is a collection of manually label

benchmark for classification in the domain of multilingual text categorization

of 23149 training samples and 781265 test samples. Among the various formats available we used

here its expression as normalized log TF

frequency) vectors in a sparse 47236

pre-processed the dataset removing samples with multiple labels and categories with less than 500

samples. After doing this we obtained a dataset of 193844 samples all coming from the test

samples which we arbitrarily divided in 188000

maintain the original ratio. Moreover, to deal with the sparsity of the feature space we performed

a dimensionality reduction step via random projection on a dense 256

Computer Science & Information Technology (CS & IT)

(a) Pictorial description of the proposed acceleration scheme. The diagram is divided in two parts: a

host processor side on the left, and a target device side on the right. We illustrate how multiple CPU threads

can be used to overlap host and device workload. A CPU thread is bound to the device, it is responsible for

device data transfer and for device control. It instructs the device to

compute the kernel matrix elements needed by the next (� + 1)-th iteration of the outer loop. All the other

available threads cooperate and are responsible for the current �-th iteration consuming the kernel matrix

elements provided by the accelerator. In this sense device and host work in a producer-consumer pattern.

stage pipeline can be used on the device in order to overlap the kernel

(H2D) and device to host (D2H) slow communications needed to transfer the dataset

on the device and the kernel matrix back to host.

We implemented the proposed method and we present here some tests against standard dataset

the ML field as well as against a 2D toy dataset in order to better asses both performances and the

degree of approximation. Moreover, we present an applicative scenario in the Computational

Synthetic dataset containing 4 clusters of 10000 elements in a 2D feature space. Each

cluster is generated by sampling a Gaussian distribution with center and width carefully selected

acilitate its visualization i.e. (σ=[0.2,0,2],µ=[0.25,0.75]), (σ=[0.2,0,2],µ=[0.75,0.75])

=[0.25,0.75]) .

dataset of handwritten digits[11]. It is composed by a training set of 60000 samples and

-dimensional feature space with integer features.

Reuters Corpus Volume I is a collection of manually labelled documents used as standard

benchmark for classification in the domain of multilingual text categorization [12]. It is com

and 781265 test samples. Among the various formats available we used

here its expression as normalized log TF-IDF (i.e. logarithmic term frequency-inverse document

frequency) vectors in a sparse 47236-dimensional feature space. As already proposed in

processed the dataset removing samples with multiple labels and categories with less than 500

samples. After doing this we obtained a dataset of 193844 samples all coming from the test

samples which we arbitrarily divided in 188000 training samples and 5844 test samples to

maintain the original ratio. Moreover, to deal with the sparsity of the feature space we performed

a dimensionality reduction step via random projection on a dense 256-dimensional space.

(a) Pictorial description of the proposed acceleration scheme. The diagram is divided in two parts: a

host processor side on the left, and a target device side on the right. We illustrate how multiple CPU threads

kload. A CPU thread is bound to the device, it is responsible for

device data transfer and for device control. It instructs the device to

er loop. All the other

th iteration consuming the kernel matrix

consumer pattern.

stage pipeline can be used on the device in order to overlap the kernel computation

slow communications needed to transfer the dataset

standard datasets in

the ML field as well as against a 2D toy dataset in order to better asses both performances and the

ve scenario in the Computational

Synthetic dataset containing 4 clusters of 10000 elements in a 2D feature space. Each

cluster is generated by sampling a Gaussian distribution with center and width carefully selected

=[0.2,0,2],µ=[0.75,0.75])

. It is composed by a training set of 60000 samples and

ed documents used as standard

. It is composed

and 781265 test samples. Among the various formats available we used

inverse document

proposed in [13] we

processed the dataset removing samples with multiple labels and categories with less than 500

samples. After doing this we obtained a dataset of 193844 samples all coming from the test

training samples and 5844 test samples to

maintain the original ratio. Moreover, to deal with the sparsity of the feature space we performed

dimensional space.

Computer Science & Information Technology (CS & IT) 193

Noisy MNIST: generated by starting from MNIST and adding uniform noise on 20% of the

features. Each sample in the training set is perturbed 20 times in order to obtain a final dataset of

1200000 samples in a 784-dimensional normalized feature space.

MD trajectory: As previously anticipated, we used Molecular Dynamics as an appealing

clustering scenario in which to leverage the features ofthe proposed algorithm. Microsecond-long

trajectories of the binding mechanism of a drug, specifically a transition state analogue named

DADMe-immucillin-H, to the Purine Nucleoside Phosphorylase (PNP) enzyme were employed

[14]. Those long trajectories well represent a good and relatively novel application domain for

clustering and machine learning in general.

When possible, we compared the clustering labels coming from the proposed procedure with the

training labels. We will consider mainly two standard quality measures:

Clustering accuracy: Let (
 be the set of labels obtained as a clustering result and let �
 be the set

of the actual classes given as training or test. The clustering accuracy is defined as �(�, () =
∑ 	!G#
"/

�(�(�X),�X)
! . Where �((
)is a mapping function which maps each clustering label to an

actual training or test class.We propose here the use of a simple majority voting scheme to obtain

such a mapping.

Normalized Mutual Information:Let now be -
 = ∑ 	!G#�"/ '((
 , �) , ,
 = ∑ 	!G#�"/ '(�
 , �) and

�
,� = ∑ 	!G#�"/ '((� , �)'(�� , �) the normalized mutual information is a quality measure defined

as�S�(�, () = ∑ 	X,6 �X,6���(P�X,6
�X�6)

(∑ 	X AX���(�XP))(∑ 	X @X���(�XP))

We tested our implementation on a variety of different platforms in order to better describe the

versatility and the potential impact of the proposed algorithm:

IBM-BG/Q - Cineca/FERMI: Cluster of 10240 computing nodes equipped with two octacore

IBM PowerA2, 1.6 GHz processors each, for a total of 163840 cores. The available memory

amounts to 16 GB / core and the internal network features a 5D toroidal topology.

IBM NeXtScale - Cineca/GALILEO: Cluster of 516 computing nodes equipped with two

octacore Intel Haswell 2.40 GHz processors for a total of 8256 cores. The available memory

amounts to 8 GB / core and the internal network features Infiniband with 4x QDR switches.

State-of-the-art Workstation:Modern desktop machine equipped with two Intel E-6500 esacore

processors and 64 GByte of memory.

4.1. Explanatory 2D toy model

As a first step to assess the proposed clustering algorithm we consider the 2D Toy dataset. We

aim at better illustrating and helping the visualization of the evolution of the cluster centres along

with the iterations of the outer loop. Incidentally, we want to highlight the consequences of a poor

sampling strategy (concept-drift) and to give a rationale for understanding its quality.

In figure 4(a)-(b) the evolution of the cluster centres is followed for two different sampling

strategies i.e. (a) stride sampling and (b) block sampling. Even though the final set of labels is the

same for such simple dataset it should be clear that the stride sampling strategy is superior in

representing the structure of the dataset within each mini-batch. The underlying question is how

could one assess the quality of the sampling strategy in a real case scenario where direct

visualization is not possible. In Fig.4(c) we try to answer by looking at the behaviour of the

194 Computer Science & In

cluster center displacement. We can comment that if such quantity is constantly small with

respect to the average cluster size, the mini

entire dataset structure. In contrast, high values or spikes in the same quantity may reflect a poor

sampling strategy.

Observing Fig.4(d) we note that the inner loop of the proposed

the partial cost �(�
), does indeed help

Fig. 4 (a-top row) From left to right the evolution of the cluster

outer loop in the case of a poorly designed block sampling strategy. (a

evolution of the cluster centres across different iterations of the outer loop in the case of a proper stride

sampling strategy where each mini-

cluster centres displacement vs outer loop iterations for the two different sampling strategies illustrated in

(a), we propose this as a control observable to assess the quality of the sampling when direct visualization is

not feasible. (c-top panel) Partial cost functio

colors represent different mini-batches. (c

iterations. It is worth noting how the inner loop iterations within each mini

global cost function.

4.2. Assessing the degree of approximation

We consider now the MNIST dataset in order to assess the degree of approximation introduced by

the mini-batch approach and by the a priori sparse representation of the cluster

our algorithm on the 60000 training samples of MNIST with

we monitored the resulting clustering

the clustering accuracy�. Results as well as execution ti

Computer Science & Information Technology (CS & IT)

cluster center displacement. We can comment that if such quantity is constantly small with

er size, the mini-batches can be regarded as good representative of the

entire dataset structure. In contrast, high values or spikes in the same quantity may reflect a poor

(d) we note that the inner loop of the proposed algorithm, i.e. the minimization of

, does indeed help in minimizing the global objective function�

top row) From left to right the evolution of the cluster centres across different iterations of the

outer loop in the case of a poorly designed block sampling strategy. (a-bottom row) From left to right the

across different iterations of the outer loop in the case of a proper stride

-batch correctly captures the underlying structure of data. (b) Average

displacement vs outer loop iterations for the two different sampling strategies illustrated in

(a), we propose this as a control observable to assess the quality of the sampling when direct visualization is

top panel) Partial cost function �(�
), ∀� ∈ [0, � = 3] vs number of iterations, different

batches. (c-bottom panel) Global cost function �(�)

iterations. It is worth noting how the inner loop iterations within each mini-batch help to bring

4.2. Assessing the degree of approximation

We consider now the MNIST dataset in order to assess the degree of approximation introduced by

batch approach and by the a priori sparse representation of the cluster centre

training samples of MNIST with � = [1,2,4,8], � ∈ [0.
clustering centres against the 10000 test samples in order to compute

. Results as well as execution times are presented in Fig.5

cluster center displacement. We can comment that if such quantity is constantly small with

batches can be regarded as good representative of the

entire dataset structure. In contrast, high values or spikes in the same quantity may reflect a poor

algorithm, i.e. the minimization of

�(�).

across different iterations of the

bottom row) From left to right the

across different iterations of the outer loop in the case of a proper stride

batch correctly captures the underlying structure of data. (b) Average

displacement vs outer loop iterations for the two different sampling strategies illustrated in

(a), we propose this as a control observable to assess the quality of the sampling when direct visualization is

vs number of iterations, different

 vs number of

batch help to bring down the

We consider now the MNIST dataset in order to assess the degree of approximation introduced by

centres. We ran

.025,1.0] and

test samples in order to compute

5. We observe

Computer Science & Information Technology (CS & IT)

that the algorithm is generally robust across a wide range of the two parameters. The

clusteringaccuracy slightly decreases when the number of mini

fixed it decreases almost monotonically with

this suggests us to position ourselves to the top

� ≈ 1.

Both � and � are trade-off parameters that have t

a desired execution time on a given compute architecture. The available memory for the

execution can lead to a first value for

fixed at its maximum. This set of parameters i.e

computational resources available i.e. minimum number of mini

representation of the cluster centroids. One can evaluate the expected execution time for the

algorithm running it on a single mini

initial requirements then one can first slowly decrease

execution time too high for

approximation degree introduced can be self consistently checked using a si

taking as reference the results obtained for the optimal set of parameters

This rationale should guide the user to finely

dataset.

Fig. 5(top panel) Cluster accuracy vs

MNIST training samples evaluated against the 10000

different values of � = [1,2,4,8]. As described in the main text this graph can help understand how to

perform model selection for the set of newly introduced parameters

and looking at the clustering accuracy

4.3. Scaling behaviour

We aim here at assessing the quality of the ad

previous section. In order to do so we tested our algo

IBM NeXtScale machines above described, against the standard MNIST dataset.

We decided to set � = 1in order to run the code in single batch mode since, as already explained,

our distribution strategy does not involve th

Computer Science & Information Technology (CS & IT)

that the algorithm is generally robust across a wide range of the two parameters. The

slightly decreases when the number of mini-batches increase and on

fixed it decreases almost monotonically with �dropping to low values when � < 0.2. As expected,

this suggests us to position ourselves to the top-left part of the graph i.e. few mini

off parameters that have to be fixed. The strategy we suggest here is to fix

a desired execution time on a given compute architecture. The available memory for the

execution can lead to a first value for � using Eq.19. As a starting point, the value of

um. This set of parameters i.e. (�@
A, 1.0). should be optimal for the

computational resources available i.e. minimum number of mini-batches without sparse

representation of the cluster centroids. One can evaluate the expected execution time for the

orithm running it on a single mini-batch, if the expected execution time does not match the

initial requirements then one can first slowly decrease � and, if this is not sufficient (i.e. expected

execution time too high for � < 0.2), then increase the number of mini-batches. The

approximation degree introduced can be self consistently checked using a single mini

reference the results obtained for the optimal set of parameters (�@
A, 1.0).

This rationale should guide the user to finely tune the trade-off parameters also on a

ccuracy vs �. (bottom panel) Execution time vs �. Clustering performed on

samples evaluated against the 10000 provided test samples. Different colors represent

. As described in the main text this graph can help understand how to

perform model selection for the set of newly introduced parameters (�, �) picking a target exec

and looking at the clustering accuracy for the compatible sets of parameters.

quality of the ad-hoc distribution strategy that we proposed in the

previous section. In order to do so we tested our algorithm both on the IBM BG/Q and on the

IBM NeXtScale machines above described, against the standard MNIST dataset.

in order to run the code in single batch mode since, as already explained,

our distribution strategy does not involve the outer loop of the proposed method i.e. increasing the

 195

that the algorithm is generally robust across a wide range of the two parameters. The

batches increase and once� is

. As expected,

left part of the graph i.e. few mini-batches and

o be fixed. The strategy we suggest here is to fix

a desired execution time on a given compute architecture. The available memory for the

. As a starting point, the value of � can be

. should be optimal for the

batches without sparse

representation of the cluster centroids. One can evaluate the expected execution time for the

batch, if the expected execution time does not match the

and, if this is not sufficient (i.e. expected

batches. The

ngle mini-batch and

.

off parameters also on a very large

. Clustering performed on 60000

provided test samples. Different colors represent

. As described in the main text this graph can help understand how to

picking a target execution time

distribution strategy that we proposed in the

rithm both on the IBM BG/Q and on the

in order to run the code in single batch mode since, as already explained,

e outer loop of the proposed method i.e. increasing the

196 Computer Science & In

number of mini-batches would have only added a multiplicative constant to the execution time

equal to �.

In Fig.6 the strong scaling plot for both machines is showed, the algorithm exhibits near to perfect

scaling for a wide range of � i.e.

The discrepancy from the ideal behaviour outside this range can be ascribed to

intrinsically serial (e.g. fetching and initialization phases) which becomes a prominent cost as

described by Amdahl's law.

Fig. 6 Execution time vs � for two different distributed architectures. IBM BG/Q in b

4.4. Standard datasets analysis

We present here the tests we performed on a state

coming from the Machine Learning community. We show how even a large dataset with

elements in 784 dimensions can be processed via a kernel approach on a desktop machine in a

reasonable amount of time. The considered datasets are MNIST (60000 samples in 784

dimensions), RCV1 (188000 samples in 256 dimensions) and noisy MNIST (1000000 sa

784 dimensions).The results are collected

For all the experiments, we used the strided sampling technique, set

clusters automatically via the elbow criterion

behaviour. As a baseline comparison for the clustering accuracy and the normalized mutual

information we used a standard python implementation of k

[15]. Results coming from RCV1 are also compared with that ap

Tab. 1 MNIST results and timings for different

B Clustering accuracy

Baseline 84.5 �
1 86.47
4 82.63
16 81.45
64 78.39

Computer Science & Information Technology (CS & IT)

batches would have only added a multiplicative constant to the execution time

the strong scaling plot for both machines is showed, the algorithm exhibits near to perfect

i.e. 16 → 1024 on IBM BG/Q and 16 → 256 on IBM NeXtScale.

The discrepancy from the ideal behaviour outside this range can be ascribed to the portion of code

intrinsically serial (e.g. fetching and initialization phases) which becomes a prominent cost as

for two different distributed architectures. IBM BG/Q in black/circles and IBM

NeXtScale in red/squares.

. Standard datasets analysis

We present here the tests we performed on a state-of-the-art workstation over standard datasets

coming from the Machine Learning community. We show how even a large dataset with

elements in 784 dimensions can be processed via a kernel approach on a desktop machine in a

reasonable amount of time. The considered datasets are MNIST (60000 samples in 784

dimensions), RCV1 (188000 samples in 256 dimensions) and noisy MNIST (1000000 sa

The results are collected respectively inTab.1-3.

we used the strided sampling technique, set s = 1, selected t

the elbow criterion and setσ = 4d¢£¤in order to mimic a lin

As a baseline comparison for the clustering accuracy and the normalized mutual

information we used a standard python implementation of k-means from the scikit-learn package

. Results coming from RCV1 are also compared with that appearing in the literature

MNIST results and timings for different � values

Clustering accuracy NMI Execution time

� 0.62	 0.693 � 0.012	 −	
47 � 0.37	 0.737 � 0.006	 655.23 � 82.92	
63 � 0.91	 0.680 � 0.011	 133.63 � 4.40	
45 � 0.653	 0.670 � 0.010	 32.17 � 2.48	
39 � 0.95	 0.626 � 0.015	 9.51 � 0.58	

batches would have only added a multiplicative constant to the execution time

the strong scaling plot for both machines is showed, the algorithm exhibits near to perfect

on IBM NeXtScale.

the portion of code

intrinsically serial (e.g. fetching and initialization phases) which becomes a prominent cost as

lack/circles and IBM

standard datasets

coming from the Machine Learning community. We show how even a large dataset with up to 106

elements in 784 dimensions can be processed via a kernel approach on a desktop machine in a

reasonable amount of time. The considered datasets are MNIST (60000 samples in 784

dimensions), RCV1 (188000 samples in 256 dimensions) and noisy MNIST (1000000 samples in

the number of

in order to mimic a linear kernel

As a baseline comparison for the clustering accuracy and the normalized mutual

learn package

pearing in the literature [13].

Computer Science & Information Technology (CS & IT) 197

Tab. 2 RCV1 results and timings for different � values

B Clustering accuracy NMI Execution time

Literature 16.59 � 0.62 0.2737 � 0.0063 −

Baseline 15.16 � 0.81 0.091 � 0.0052 −

4 17.41 � 0.83 0.147 � 0.006 797.65 � 53.48

16 16.52 � 0.74 0.145 � 0.001 170.96 � 4.94

64 16.15 � 0.60 0.132 � 0.001 77.20 � 3.96

Tab. 3Noisy MNIST (106 samples) results and timings for different	� values

B Clustering accuracy NMI Execution time

Baseline −	 −	 −	
32 64.19 � 1.03 0.541 � 0.005 2334.31 � 25.63

64 60.97 � 0.3 0.506 � 0.001 1243.81 � 23.43

4.5. Molecular dynamics trajectory clustering

In this section we analyze the behaviour of the clustering algorithm in terms of the quality of the

obtained results in the MD domain. Basically, we compared the results obtained by the current

implementation with respect to the results obtained in [1]. In that paper the binding process of a

drug to its target was simulated and we used an in house clustering tool to get intermediate states

of the protein/ligand complex formation along the binding routes. There, we employed the k-

medoids algorithm and we were able to completely characterize the binding process.

Here we ran again the same kind of analysis systematically verifying that the same, or very

similar, binding intermediates could be obtained. For the analysis of the structures, we extracted

the medoids from each cluster. The same atoms as per [1] were used for the clustering.To define

the number of clusters we used the elbow criterion as in [1] trying the clustering in the (4,40)

range; in the end, we obtained 20 clusters as an optimal value.

For each run we initialized 5 times the algorithm with the k-means++ method and kept the

solution with minimum cost. To assess the accuracy of the approximated algorithm we split the

dataset in 4 mini-batches each comprising about 250000 samples, thus drastically limiting the

kernel matrix size with respect to a full run. We used the strided sampling because data was batch

available and when possible, this sampling should be always used. As previously anticipated, we

evaluated the quality of the results by the capability of the solution to capture the key events of

the simulations. In Fig.7(a) we summarize the meaning of the medoids in structural terms using

the same naming conventions appeared in [1] and associate them with the respective cluster id.

Overall those medoids well recapitulate the binding process giving the same synthetic description

obtained in [1] despite the mini-batch approximation. In particular, we show here, in Fig.7(b), the

distance matrix computed across the medoids; we reordered the columns based on the manual

classification induced by visual inspection. Results show clearly the three main macro-sections of

the simulation namely the bound state, the entrance paths and the out unbound states.

198 Computer Science & In

Fig. 7 (a) Table summarizing medoids for MD data and their labe

axes we indicate the medoid identifiers. On the upper left is well visible the macro

Then, this area extends to the right including the entrance paths, and lastly, on the lower right corner,

unbound states

5. DISCUSSION

Mini-batch approaches are not new in the clustering community and encountered a great success

when applied to standard k-means

Gradient Descent (SGD) procedure co

of mini-batches to a rather small value, namely

for the algorithm.

Our take here is quite different. The number of iterations is by construction e

of mini-batches �in order to exploit the entire dataset. Moreover, a major difference with the

SGD procedure proposed by Sculley is here represented by the inner loop. We actually believe

that iterating each mini-batch up to convergence

function and to a less noisy procedure.

A comparison about the clustering accuracy achieved by the two algorithms for the original

MNIST dataset is shown in Fig.8

as the number of mini-batches

proposed by Sculley are almost constant. Moreover, and as expected, our algorithm is less

sensitive to noise, indeed the clustering accuracy varianc

the SGC procedure.

We stress also the fact that our parallelization approach is rather different when compared to what

in literature is referred to as parallel patch clustering, see e.g.

across mini-batches assigning one mini

within each mini-batch thus allowing the algorithm to cope with virtually any sample size

Computer Science & Information Technology (CS & IT)

(a) Table summarizing medoids for MD data and their labelling (b) Medoids RMSD matrix. On the

s we indicate the medoid identifiers. On the upper left is well visible the macro-area of the bound states.

Then, this area extends to the right including the entrance paths, and lastly, on the lower right corner,

batch approaches are not new in the clustering community and encountered a great success

means [9]. In his work, Sculley showed how a mini-batch Stochastic

Gradient Descent (SGD) procedure converges faster than regular GD. He proposed to set the size

batches to a rather small value, namely ≈ 10¥, and to fix an a-priori number of iterations

here is quite different. The number of iterations is by construction equal to the number

in order to exploit the entire dataset. Moreover, a major difference with the

SGD procedure proposed by Sculley is here represented by the inner loop. We actually believe

batch up to convergence can lead to a better minimization of the cost

function and to a less noisy procedure.

A comparison about the clustering accuracy achieved by the two algorithms for the original

8. It is worth noting that our proposed algorithm performs better

batches � decreases whereas the performances of the SGD procedure

proposed by Sculley are almost constant. Moreover, and as expected, our algorithm is less

sensitive to noise, indeed the clustering accuracy variance is much lower in comparison to that of

We stress also the fact that our parallelization approach is rather different when compared to what

in literature is referred to as parallel patch clustering, see e.g. [16]. Indeed, we don't paral

batches assigning one mini-batch per node. Instead, we parallelize the iterations

batch thus allowing the algorithm to cope with virtually any sample size

Medoids RMSD matrix. On the

area of the bound states.

Then, this area extends to the right including the entrance paths, and lastly, on the lower right corner, the

batch approaches are not new in the clustering community and encountered a great success

batch Stochastic

nverges faster than regular GD. He proposed to set the size

priori number of iterations

qual to the number

in order to exploit the entire dataset. Moreover, a major difference with the

SGD procedure proposed by Sculley is here represented by the inner loop. We actually believe

can lead to a better minimization of the cost

A comparison about the clustering accuracy achieved by the two algorithms for the original

hm performs better

decreases whereas the performances of the SGD procedure

proposed by Sculley are almost constant. Moreover, and as expected, our algorithm is less

e is much lower in comparison to that of

We stress also the fact that our parallelization approach is rather different when compared to what

. Indeed, we don't parallelize

node. Instead, we parallelize the iterations

batch thus allowing the algorithm to cope with virtually any sample size.

Computer Science & Information Technology (CS & IT) 199

Fig. 8 Clustering Accuracy vs number of mini-batchs� for the proposed algorithm (black line) and the SGD

k-means procedure proposed by Sculley (red line). Comparison performed on the original MNIST dataset

with � = 10, ¦ = 4§@¨I to mimic a linear behaviour.

6. CONCLUSIONS

In this paper we presented a distributed and efficient approximation scheme for the kernel k-

means algorithm. The approximation scheme applies an adaptive strategy based on the available

memory resources together with the full exploitation of CPUs and GPUs capabilities. We

obtained state of the art results in several application domains in terms of accuracy even in a

heavily approximated regime; moreover, we got linear scaling in several different, distributed,

computational architectures, something particularly useful in the big data era.

Next developments will deal with the full GPU porting of the algorithm exploiting GPU direct

communications facilities of nVidia GPUs and the systematic application to the molecular

dynamics domain, with particular attention to drug discovery, possibly proposing algorithmic

extensions to best fit the field requirements.

REFERENCES

[1] Sergio Decherchi et al., (2015), “The ligand binding mechanism to purine nucleoside phosphorylase

elucidated via molecular dynamics and machine learning.” ,Nature communications, 6.

[2] Mark Girolami, (2002),“Mercer kernel-based clustering in feature space.”, IEEE Transactions on

Neural Networks, 13, 3, pp780–784.

[3] Radha Chitta, et al.,(2011),“Approximate kernel k-means: Solution to large scale kernel clustering”,

Proceedings of the 17th ACM SIGKDD international conference on Knowledge discovery and data

mining, ACM, pp 895–903.

[4] Luca Mollica et al., (2015), “Kinetics of protein-ligand unbinding via smoothed potential molecular

dynamics simulations.”, Scientific Reports, 5.

[5] S Kashif Sadiq et al.,(2012),“Kinetic characterization of the critical step inHIV-1 protease

maturation.”,Proceedings of the National Academy of Sciences, 109, 50, pp 20449–20454.

[6] Rong Zhang and Alexander I Rudnicky. (2002), “A large scale clustering scheme for kernel k-

means.”, Pattern Recognition. Proceedings. 16th International Conference on,4, pp289–292.

[7] Leon Bottou and YoshuaBengio,(1995),“Convergence properties of the k-means algorithms.”

Advances in neural information processing systems, pp 585–592.

200 Computer Science & In

[8] David Arthur and Sergei Vassilvitskii, (2007),“k

Proceedings of the eighteenth annual ACM

Industrial and Applied Mathematics, pp 1027

[9] David Sculley, (2010),“Web

conference on World wide web, pp 1177

[10] Jason Sanders and Edward Kandrot,(2010),“CUDA by example: an

GPU programming.”, Addison

[11] Yann LeCun and Corinna Cortes,(1998),“The MNIST database of handwritten digits.”.

[12] David D Lewis et al.,(2004),“Rcv1: A new benchmark collection for text

research.”Journal of machine learning research,5, pp 361

[13] Wen-Yen Chen et al.,(2011).“Parallel spectral

on pattern analysis and machine intelligence, 33, 3, pp 568

[14] Meng-Chiao Ho, et al.,(2010),“Four generations of transition

nucleoside phosphorylase.” Proceedings of the National Academy of Sciences, 107, 11, pp 4805

4812.

[15] Fabian Pedregosa, et al.,(2011),“Scikit

Learning Research”, 12,pp 2825

[16] Alex, N. and Hammer, B., (2008),“Parallelizing single patch pass clustering”, ESANN, pp. 227

AUTHORS

Marco Jacopo Ferrarotti

Graduated in Physics of Complex Systems in

and Paris-Sud University. Since 2014 he moved to theDrug Discovery and Development

Department of the Italian Institute of Technology as PhD student working on study and

developments of scalable Machine Learning meth

simulations.

Sergio Decherchi

Graduated in Electronic Engineering in 2007 from Genoa University, Italy. Since 2005

he started collaborating with the Department of Biophysical and Electronics Engineering

of Genoa University, where he completed a PhD inMachine Learning and Data Mining

in 2010. His main research interests are computational byophisics and computational

intelligence tools for drug discovery and virtual screening. He published more than 20

papers in refereed conferences and journals.

Walter Rocchia

Graduated in Electronic Engineering on July 1996. In February 2000, he got a PhD in

Electronic Devices at the University of Trento. He then was a Research Scholar at the

Biochemistry Department of the Colu

Discovery and Development Department of the Italian Institute of Technology, working

on computational approaches to ligand

2014, he created the Computational mOd

(CONCEPT) Lab.He is author of more than 50 publications including International

Journals, book contributions and Proceedings.

Computer Science & Information Technology (CS & IT)

David Arthur and Sergei Vassilvitskii, (2007),“k-means++: The advantages of careful seeding.”,

of the eighteenth annual ACM-SIAM symposium on Discrete algorithms. Society for

Applied Mathematics, pp 1027–1035.

David Sculley, (2010),“Web-scale k-means clustering.”, Proceedings of the 19th international

World wide web, pp 1177–1178.

Jason Sanders and Edward Kandrot,(2010),“CUDA by example: an introduction to general

programming.”, Addison-Wesley Professional.

Yann LeCun and Corinna Cortes,(1998),“The MNIST database of handwritten digits.”.

David D Lewis et al.,(2004),“Rcv1: A new benchmark collection for text

research.”Journal of machine learning research,5, pp 361–397.

Yen Chen et al.,(2011).“Parallel spectral clustering in distributed systems.”, IEEE transactions

on pattern analysis and machine intelligence, 33, 3, pp 568–586.

Chiao Ho, et al.,(2010),“Four generations of transition-state analogues for human purine

nucleoside phosphorylase.” Proceedings of the National Academy of Sciences, 107, 11, pp 4805

Fabian Pedregosa, et al.,(2011),“Scikit-learn: Machine learning in Python. Journal of Machine

Learning Research”, 12,pp 2825–2830.

and Hammer, B., (2008),“Parallelizing single patch pass clustering”, ESANN, pp. 227

Graduated in Physics of Complex Systems in 2013 jointly from Politecnico di Torino

Sud University. Since 2014 he moved to theDrug Discovery and Development

Department of the Italian Institute of Technology as PhD student working on study and

developments of scalable Machine Learning methods applied to Molecular Dynamics

Graduated in Electronic Engineering in 2007 from Genoa University, Italy. Since 2005

he started collaborating with the Department of Biophysical and Electronics Engineering

University, where he completed a PhD inMachine Learning and Data Mining

in 2010. His main research interests are computational byophisics and computational

intelligence tools for drug discovery and virtual screening. He published more than 20

ereed conferences and journals.

Graduated in Electronic Engineering on July 1996. In February 2000, he got a PhD in

Electronic Devices at the University of Trento. He then was a Research Scholar at the

Biochemistry Department of the Columbia University. In 2008, he moved to the Drug

Discovery and Development Department of the Italian Institute of Technology, working

on computational approaches to ligand-protein binding free energy estimation. In late

2014, he created the Computational mOdelling of NanosCalE and bioPhysicalsysTems

(CONCEPT) Lab.He is author of more than 50 publications including International

Journals, book contributions and Proceedings.

means++: The advantages of careful seeding.”,

SIAM symposium on Discrete algorithms. Society for

Proceedings of the 19th international

introduction to general-purpose

 categorization

IEEE transactions

state analogues for human purine

nucleoside phosphorylase.” Proceedings of the National Academy of Sciences, 107, 11, pp 4805–

rning in Python. Journal of Machine

and Hammer, B., (2008),“Parallelizing single patch pass clustering”, ESANN, pp. 227-232.

