

Natarajan Meghanathan et al. (Eds) : NeCoM, SEAS, CMCA, CSITEC - 2017
pp. 35– 52, 2017. © CS & IT-CSCP 2017 DOI : 10.5121/csit.2017.71204

FRAMEWORK FOR WIRELESS SENSOR

NETWORKS CODE GENERATION FROM

FORMAL SPECIFICATION

Sara Houhou1, Laid Kahloul1, Saber Benharzallah2 and Roufaida Bettira1

1LINFI laboratory, Computer Science Department, Biskra University, Algeria
2LINFI laboratory, Department of Computer Science, Batna 2 University,

Batna, Algeria

ABSTRACT

The development of embedded applications (such as Wireless Sensor Network protocols) often

requires a shift to formal specifications. To insure the reliability and the performance of the

WSNs, such protocols must be designed following some methods reducing error rate. Formal

methods (as Automata, Petri nets, algebra, logics, etc.) were largely used in the specification of

these protocols, their analysis and their verification. After that, their implementation is an

important phase to deploy, test and use those protocols in real environments. The main

objective of the current paper is to formalize the transformation from high-level specification (in

Timed Automata) to low-level implementation (in NesC language and TinyOs system) and to

automate such transformation. The proposed transformation approach defines a set of rules that

allow the passage between these two levels. We implemented our solution and we illustrated the

proposed approach on a protocol case study for the "humidity" and "temperature" sensing in

WSNs applications.

KEYWORDS

Formal Methods, Timed Automata, Wireless Sensor Network, Code Generation, Automatic

Transformation

1. INTRODUCTION

Embedded systems are used in several domains: robotics, smart cars, wireless sensor networks
(WSNs), etc. WSNs [1] are composed of tiny embedded devices. They can be defined as a
distributed sensors system with an auto-configured infrastructure. To guarantee the reliability and
performance in the development of these systems, the use of formal methods represents an
ambitious issue. Formal methods allow high-level specification, avoid ambiguity and provide
verification techniques. However, the passage from high-level description to the concrete
implementation remains an informal step and error prone. The formalisation of this passage and
its automation is an attractive research field.

In this paper, we propose a code generator tool that takes as input a formal specification of WSN
protocols and generates implementation files in NesC language [2], which is a C dialect language,
intended for programming structured component based applications for the TinyOs [2] operating
system. admittedly, the approach takes as input a specification written in Timed Automata (TA)

36 Computer Science & Information Technology (CS & IT)

[3] provided and verified by UPPAAL [4] model-checker tool and generates a source code
written in the NesC [2] language which is the most used in WSNs development. The choice of
TA relapsed to time aspect, which is an important characteristic of WSNs. In fact, this paper
makes the following contributions: (1) Proposes an extension for timed automata model, (2)
Defines a set of transformation rules from TA elements to NesC code, and (3) Implements in
Python the generator code tool that takes the TA model as input and generates the corresponding
source code.

The reminder of this paper is organised as follows: Section 2 presents related work. Section 3
presents the proposed approach. Section 4 presents the proposed rules and restrictions for the
transformation. Section 5 presents the algorithm of the code generation tool. Section 6 presents
the application of the proposed approach on a WSN protocol, and finally Section 7 concludes the
paper.

2. RELATED WORK

Different approaches to WSN application development can be found in the literature. The work
[5] presents a model driven development (MDD) approach for the of WSN applications. The
authors define three meta-model at different level of abstraction, with automatic model
transformations between them. Moreover, the input of their approach is a domain specific
language (DSL) [6]. At first, they define two model-to-model transformation successively which
are: DSL model to a subset of UML [7] meta-model for describing a structure of the system and
model resulting to NesC meta-model, then, they define model-to-code transformation from NesC
meta-model to NesC code. This approach is based on semi-formal specification instead of formal
language as proposed in our approach. In [8], the authors present another MDD process to convert
a high-level abstract model to a concrete model. The input of their approach is Domain Specific
Modelling Language (DSML) [9], and then it is transformed into an executable model TinyDB
[10] by using the model transformation rule. The key limitation in their research is that the
DSMLs have the capability to describe static applications, meanwhile not to describe mobility
and adaptive behaviour of WSNs. In addition, the authors do not conserve the consistency
between the models. In [11]–[13], the authors present an approach for developing the DMAMAC
protocol proposed in [11]. In [12], the authors design the protocol with an abstract formal model
(TA), and then they implement it in NesC language. This approach is based on a manual
transformation, thus it may induce lot of errors, and consumes time and efforts.

Recently, several authors [14]–[17] have proposed model driven software engineering (MDSE)
approach for WSNs code generation from Coloured Petri Nets (CPNs). Inge et.al. [14] describe
an automatic code generation from a restricted class of CPNs, annotated with code generation
pragmatics, called Pragmatics annotated Coloured Petri nets (PA-CPN) [15] models, to a set of
target language (groovy [18], Java [19], Clojure [20], and Python [21]). The tool PetriCode
described in [16] shows the implementation of this approach. The authors in [17] used this
approach on an industrial sized protocol, which is IETF WebSocket, and they generated its
implementation for the Groovy platform. However, the use of pragmatics approach to generate
code for any target platform restrict the class of CPN models and make it not suitable for TinyOs.
In [22], the authors expanded the PetriCode tool [16] to specific platform model to generate the
implementation of sensor network protocols. The input of this approach is Coloured Petri Nets
models of protocols, then, the resulting CPN model is given to PetriCode tool, which transformed
it automatically to code for (MiXiM [23] simulator, and TinyOs platforms, C++, and NesC
respectively. In [24], the authors completed the code generation for the two specific platforms and
they tested it in real-world deployment Zolertia Z1 motes. However, this last approach ignores the
stochastic nature and real time constraints of WSNs. In [25], another approach based on
pragmatics is presented. The approach describes a transformation from CPNs to NesC code

Computer Science & Information Technology (CS & IT) 37

running in TinyOs platform. The construction of CPNs models follows five stages of manual
refinement. After the fifth stage, the source code of protocol is generated automatically for the
TinyOs platform using a prototype software. The major drawback of this approach is that the
refinement steps are specified informally. In addition, the approach is based on manual
refinement of models, which may induce errors.

3. APPROACH DESCRIPTION

The main purpose of the paper is the automatic code generation to facilitate the development of
WSN applications. The figure 1 represents the global architecture of the proposed approach,
illustrating the use of two tools: UPPAAL and the "Code Generator tool". Firstly, the UPPAAL
tool is used to model the application and to verify the WSNs model protocols. Secondly, the
"Code Generator tool" which represents the implementation of our transformation approach. The
input of the approach is a formal protocol description (i.e., a network of Timed Automata) and a
set of modelling restrictions. The timed automata network is specified using UPPAAL tool and
the designer of the system must respect the modelling restrictions (introduced in this paper) to
assist the generation of a complete code. These restrictions oblige the designer to add specific
keywords on timed automata (as procedures and synchronization variables). These later represent
functional information linked with patterns of the target language. After the modelling, we check
the properties to be verified, if they are satisfied, the "Code Generator tool" takes as input the
resulted and verified model and transforms it into an implementation by applying the proposed
mapping rules. The result of the mapping phase is an instance of the implementation. The
generated implementation represents a large part of the real code of the protocol but it needs some
additions to be emulated in real hardware or simulated in a simulator tools as TOSSIM [26].

Figure 1: Approach Overview.

4. CODE DERIVATION

In this section, we present the basic step of our approach, which transforms high-level
specifications written in TA to a NesC source code of a WSN protocol. In order to generate a
source code using our tool, we apply the following informal restrictions to transform a given
timed automata to a NesC code. These restrictions refer to the generic patterns that TinyOs
defines (the use of hardware as Radio and LEDs, the software as the clock components, the
sensing components, and the message communication). We quote these restrictions in the table 1:

38 Computer Science & Information Technology (CS & IT)

Table 1: Restrictions.

Number Restrictions

1 the user must define explicitly the timed automata model used to model the environment;

2 the user must use the procedure PreparePacket() to define the packet structure;

3 the user must use the procedure LediToggle to turn on and off LEDs;

4 the user must use the procedure LediOn to turn on LEDs;

5 the user must use the procedure LediOff to turn off LEDs;

6 the user must use the procedure Ack() to enforce acknowledgements for the transmitted
messages in the protocol;

7 the user must use the procedure TempRead() to sense temperature measure from the
environment;

8 the user must use the procedure HumidRead() to sense humidity measure from the
environment;

9 the user must use the procedure LightRead() to sense light measure from the environment;

10 the user must use the procedure VoltRead() to sense the voltage measure from the
environment;

11 the user must use the variable isSucceed to check whether the previous sensing procedures
are executed successfully;

12 The user must use the synchronisation channel Comm to model the sending and receiving
radio messages.

The generation of protocol implementation uses a set of rules that we have defined to map each
TA element to a portion of source code. These rules are presented in the following items:

• R1. Each set of templates in the TA model will be used to generate a WSN application.

• R2. Each template is mapped to a module component and a configuration component
unless if this TA is added for only simulation purposes (i.e., humans, environment, pre-
exiting systems...etc.).

• R3. Each module component of a template uses the Boot interface and implements the
initial point of each NesC program to be executed automatically by the processor, which
is the "Booted" event. The Boot event is signalled when the system has booted
successfully.

Computer Science & Information Technology (CS & IT) 39

• R4. Clocks in the TA trigger the use of an instance of the TimerC component. The
interface Timer provided by this later is used in the module file. The application starts
firstly the Timer by calling the command startPeriodic for many times or startOneShot

for one single time. Such commands are often implemented in the booted event that we
have specified in the previous rule. The clock variables values represent the Timer period.
As a consequence of using the interface Timer, we should define the fired event, which is
signalled when the Timer expires. In the configuration file, a component must be added
for wiring the Timer interface to an instance of the TimerMilliC component.

• R5. The use of keywords: (LediToggle (), LediOn (), and LediOff () where i = 0...2
according to the manipulated LED) in TA. These keywords are mapped to: the use of the
Leds interface in the module file, a call of the LediToggle() (resp. LediOn(), and
LediOff()) command, finally, the declaration of the component LedC in the configuration
file, which provides the Leds interface and wires it to the module which uses this
interface.

• R6. The use of the keyword Ack () in the TA is mapped to: the use of the
PacketAcknowledgements interface in the module file. To call the RequestAck command
defined in the PacketAcknowledgements interface before sending messages, to call the
WasAcked command defined in the PacketAcknowledgements interface to ensure the
arrival of the acknowledgement, and to declare the component ActiveMessageC in
configuration file, which provides the interface PacketAcknowledgements and wires it to
the module which uses this interface.

• R7. The use of the keyword preparePacket(arg) in the TA is mapped to the: use the
Packet interface in the module file, to define a structure of message in a header file, to
import this later in the module, and to declare a function preparePacket(typedef arg) in
the concerned module.

• R8. The use of the keyword comm refers to a communication, which involves : the
manipulation of the radio and the use of the SplitControl interface in the module, the call
to the start command for starting the radio in the booted event, and the implementation of
the startDone() (resp. stopDone()) events, which are defined in the SplitControl
interface. In addition, the declaration of the component ActiveMessageC in the
configuration file which provides the interface SplitControl and wires it to the module,
which uses this interface.

• R9. As the communication contains two parts, the transformation will be as follows:

o The sender part comm! is mapped to the: use of the AMsend interface, to call the
function preparePacket(arg), to call the send() command in the module file, to
implement the sendDone() event in the module, and to declare the component
AMSenderC(AM RADIO) in the configuration file, which provides the interface
AMSend and wires it to the module using this interface.

o The receiver part comm? is mapped to the: use of the Receive interface, to implement
the receive event. Then, to declare the component ReceiveC in the configuration file,
which provides the interface Receive and wires it to the module, which uses this
interface.

• R10. The use of the keyword TempRead () in the TA are mapped to the : use the Read ()
interface as TempRead, to call the Read command in the module file, to implement the
ReadDone () event in the module, and to declare an instance of the component

40 Computer Science & Information Technology (CS & IT)

SensirionSht11C () in configuration file. This component provides the interface
temperature and wires it to the module, which uses the TempRead interface.

• R11. The use of the keyword HumidRead () in the TA are mapped to: the use the Read ()

interface as HumidRead, to call the Read command in the module file, to implement the
ReadDone () event in the module, and to declare an instance of the component
SensirionSht11C () in configuration file. This component provides the humidity interface
and wires it to the module, which uses the HumidRead interface.

• R12. The use of the keyword LightRead () in the TA is mapped to: the use of the Read ()

interface as LightRead, to call the Read command in the module file, to implement the
ReadDone () event in the module, and to declare an instance of the component
HamamatsuS10871TsrC () in configuration file, then wires it to the module which uses
the LightRead interface.

• R13. The use of the keyword VoltRead () in the TA is mapped to: the use of the Read ()

interface as VoltRead, to call the Read command in the module file, to implement the
ReadDone () event in the module, and to declare an instance of the component VoltageC

() in configuration file, then wires it to the module which uses the VoltRead interface.

• R14. Variables declared in a particular template are mapped to a declaration of variables
in the module, which implements this template.

• R15. If the guard is built upon non-clock variables then it is mapped to a standard
conditional branching (an If or If-Else block) in the implementation of the module file,
according to the state source of the transition. If the guard is upon clock variables then it
is mapped to arguments used in the starting commands of the timer. When using the
variable isSucceeded, a particular if-else block will be generated.

5. CODE GENERATOR TOOL

In this subsection, we present the implemented tool that enables the use of formal model for a
semi-automated code generation approach. As presented in Figure.2, the transformation can be
applied on a given formal specification in timed automata to nesC language. In that case, the
designer can design the TA using the UPPAAL tool [4]. UPPAAL is a model checker supporting
the timed automata modelling. UPPAAL is based on timed automata concepts, which are a set of
clocks, channels for the synchronized systems (automata), variables and additional elements.
Each automaton has an initial state. The synchronization between the different automata can take
place using channels. A channel may be an output channel (denoted by channel-name!), or an
input channel (denoted by channel-name?). After the design of the model, the designer can use
UPPAAL also to check proprieties, verify and validate the model. When the model is validated,
the designer can import it to the implemented Code Generator tool in-order to generate the
corresponding code implementation (See the Figure.3).

Computer Science & Information Technology (CS & IT) 41

Figure 2: Generator tool interface (Importing XML Files from UPPAAL).

The implementation of the code generator framework and the translation library are written in
Python language [21]. Python is an intelligent untyped programming language that lets you work
more quickly and integrate your systems more effectively. It is an open source language, and it is
available for several operating systems. Firstly, we use the PyXB Python library for parsing XML
files of timed automata. XML [27] is used as the standard format to describe models, formats, and
data types. The modelled specification in UPPAAL is XML files that can be opened and
visualized graphically as template models. Secondly, we have developed a translation from the
information resulting from the parsing step to NesC source code by implementing the
transformation rules. The following algorithms present the main procedures used in the
implementation of our generator tool. The Algorithm 1 introduces the procedures used to map the
formal model specification to NesC code. In this algorithm, we follow the same logic of steps
presented in Fig. 2. First, each element in the XML file (representing the formal specification) is
statically parsed to identify the set of operations and variables declaration. The functional
behaviour (operations) can be identified from global declaration part of the XML file and from
the template part. Then, as represented in the procedure 1 and the procedure 2, for each checked
operation, we apply the corresponding rule. At the same time, the generated files are filled.

42 Computer Science & Information Technology (CS & IT)

Computer Science & Information Technology (CS & IT) 43

6. APPLICATION ON A CASE STUDY

Our example is an illustrative system that offers to the user the opportunity to measure the
humidity and the temperature from the environment. This system presents an Air temperature and
Humidity monitoring used in temperature-controlled rooms. This system contains all the elements

44 Computer Science & Information Technology (CS & IT)

of sensor network application such as communication (sending and receiving), sensing, and
processing packets. The system describes the communication between two Telosb nodes in a
sensor network. The system uses two clocks. An alarm system should be linked to the monitoring
system, which presented in our case by the use of two LEDs. The system manages the sending
and receiving cycle using two clocks. The two nodes are specified as Sense_Sender node, which
has two types of sensing (temperature and humidity), and the receiver node. The communication
between these two nodes is based on the temperature, and humidity measurements. Each time c1
(2000 milliseconds), the Sense_Sender node detects the humidity and the temperature values from
the environment and uses these values to calculate the humidity (resp. the temperature). If any of
these values are upper a certain threshold, the corresponding LED turns on. After 4000
milliseconds for the second clock, the receiver board will light up.

6.1. Timed Automata Models of the System

We modelled the example with three timed automata. The first and second automaton represent
the behaviour of the temperature (resp. humidity) sensing operations as shown in the Figure 4
(resp. 5). The third TA depicted in Figure 6 represents the receiver.

Figure 3: TA Model for Temperature Sensing.

Figure 4: TA Model for Humidity Sensing.

Computer Science & Information Technology (CS & IT) 45

Figure 5: TA Model for the Receiver part.

6.2. Timed Automata Models of the System

In this subsection, we present the principal files, which contain the implementation of the given
model. The code presented in the following listings (see listings 1, 2) show the generated code by
our code generator. Due to space reason, we have explained a part of the generated code from the
model presented in 6.1. The Figure.4 presents the timed automata of the temperature sensing.
Firstly, the code generator applies the rules R1 and R2 to create a module and a configuration
files. Then, it applies the rule R3 to implement the first event to start the program execution. The
figure.3 shows a started transition (S0, S1) labelled by two resets (t1=:0, t2:=0) of the clocks t1,
t2 and one procedure "Led0On()". During the parsing of the model, the appearance of a clock in a
guard or a reset on a transition triggers the application of the rule R4 that consists to a call for the
Timer component. The procedure call "Led0On()" on the transition (S0,S1) is mapped to the use
of the LEDs component in the code, using the rule R5. The listings 1, 2 present the module and
the configuration files. The transition (S1, S2) is labelled by the guard (t1==2000) and the
procedure call (TempRead()). During the parsing of the model, the guard upon the clock t1 is
used to define the argument value used in a starting time command as mentioned in the rule R14.
The call of the procedure TempRead() is mapped to the use of the "temperature sensing
component" as described in the rule R10. In addition, if the procedure TempRead defines and
uses variables, the code generator applies the rule R13. The following listings 1 and 2 show the
generated code corresponding to the part of the model linking state S0 to state S2. We put the
complete generated code in the appendix A.

Listing 1: Skeleton of the configuration file.

configuration SenseC{
}

implementation{

 components MainC, LedsC;

 components TempM;

 components new TimerMilliC() as T1;

 components new TimerMilliC() as T2;
 TempM.Boot -> MainC;

 TempM.Leds -> LedsC;

 TempM.T1 -> T1;

 TempM.T2 -> T2;

}

46 Computer Science & Information Technology (CS & IT)

Listing 2: Skeleton of the module file.

7. CONCLUSION AND PERSPECTIVES

Wireless sensor networks are of considerable interest and a new stage in the evolution of
information and communication technologies. This new technology attracts increasing interest
because of the diversity of its applications: health, environment, industry and even sports. In the
current paper, an automated transformation approach was presented which intended to generate
source code of specific target language (NesC programming language) from high-level formal
specification (Timed Automata model). This approach is divided into two parts: the first part is
dedicated to the modelling of the WSNs system respecting specific constraints model, and a
second part dedicated to code generation. In fact, the proposed approach is intuitive, it defines a
set of transformation rules that a generator code takes as input as well as the XML description of
a TA specification, and then it generates the source code. In order to automate this
transformation, we have implemented these rules in a framework. In addition, we have
demonstrated the application of the approach on a case study of air monitoring system. During the
realisation of the current work, we have faced several difficulties in the definition of rules. This is
due to the high level abstraction of TA whereas NesC is closer to hardware devices. Therefore, it
is not evident to extract enough information from TA, that help in the implementation of a WSN
system. The current work has defined a set of not complete rules. These rules can be used to
generate code for several case studies. The work will be improved by completing the set of rules
that can be used to generate code for more complex formal models and to consider other aspect of
the formal model (i.e., probabilistic parameters).

REFERENCES

[1] Yick, J., Mukherjee, B., & Ghosal, D. (2008). Wireless sensor network survey. Computer

networks, 52(12), 2292-2330.

[2] Levis, P., & Gay, D. (2009). TinyOS programming. Cambridge University Press.

#include "packets.h"

// application of the rule R1
module TempM{

 uses {
 // application of the rule R3

 interface Boot;
 // application of the rule R5

 interface Leds;
 // application of the rule R4

 interface Timer<TMilli> as T1;
 interface Timer<TMilli> as T2;

 }

}

implementation{

 // application of the rule R3
 event void Boot.booted(){

 // application of the rule R4
 call T1.startPeriodic(...);

 call T2.startPeriodic(...);
 // application of the rule R5

 Leds.led0On;
 }

 // application of the rule R4
 event void T1.fired(){

 }

 event void T2.fired(){

 }
}

Computer Science & Information Technology (CS & IT) 47

[3] Bengtsson, J., & Yi, W. (2004). Timed automata: Semantics, algorithms and tools. Lecture Notes in

Computer Science, 3098, 87-124.

[4] J. B. Gerd Behrmann, Tobias Amnell, (2015). "UPPAAL", URL: http://www.uppaal.org/. [accessed:

2017-05-08].

[5] Losilla, F., Vicente-Chicote, C., Álvarez, B., Iborra, A., & Sánchez, P. (2007, September). Wireless

sensor network application development: An architecture-centric mde approach. In European
Conference on Software Architecture (pp. 179-194). Springer, Berlin, Heidelberg.

[6] D. Demange, (2006), “Domain specific language”, URL: http://igm.univmlv.fr/~dr/XPOSE2006

/LOPDEMANGE/dsl.html [Accessed: 2017-07-14].

[7] O. M. Group, (2017), “Unified modeling language”, URL: http://www.uml.org/
 [Accessed: 2017-03-15].

[8] Shimizu, R., Tei, K., Fukazawa, Y., & Honiden, S. (2011, May). Model driven development for rapid

prototyping and optimization of wireless sensor network applications. In Proceedings of the 2nd
Workshop on Software Engineering for Sensor Network Applications (pp. 31-36). ACM.

[9] S. I. J. R. B. S. Grady Booch, Alan Brown, (2004), “Domain-specific modelling”, URL: http://

www.dsmforum.org/ [accessed: 2017-05-15].

[10] Madden, S. R., Franklin, M. J., Heller stein, J. M., & Hong, W. (2005). TinyDB: an acquisitional

query processing system for sensor networks. ACM Transactions on database systems (TODS), 30(1),
122-173.

[11] Somappa, A. A. K., Øvsthus, K., & Kristensen, L. M. (2014). Towards a dual-mode adaptive MAC

protocol (DMA-MAC) for feedback-based networked control systems. Procedia Computer
Science, 34, 505-510.

[12] Somappa, A. A. K., Prinz, A., & Kristensen, L. M. (2015). Model-Based Verification of the

DMAMAC Protocol for Real-time Process Control. In VECoS (pp. 81-96).

[13] Somappa, A. A. K., Øvsthus, K., & Kristensen, L. M. (2016). Implementation and Deployment

Evaluation of the DMAMAC Protocol for Wireless Sensor Actuator Networks. Procedia Computer
Science, 83, 329-336.

[14] Simonsen, K. I. F., Kristensen, L. M., & Kindler, E. (2013, September). Generating protocol software

from cpn models annotated with pragmatics. In Brazilian Symposium on Formal Methods (pp. 227-
242). Springer, Berlin, Heidelberg.

[15] Simonsen, K. I. F., Kristensen, L. M., & Kindler, E. (2016). Pragmatics annotated coloured petri nets

for protocol software generation and verification. In Transactions on Petri Nets and Other Models of
Concurrency XI (pp. 1-27). Springer Berlin Heidelberg.

[16] Simonsen, K. I. F. (2013, September). PetriCode: a tool for template-based code generation from CPN

models. In International Conference on Software Engineering and Formal Methods (pp. 151-163).
Springer, Cham.

[17] Simonsen, K. I. F., & Kristensen, L. M. (2014, June). Implementing the websocket protocol based on
formal modelling and automated code generation. In IFIP International Conference on Distributed
Applications and Interoperable Systems (pp. 104-118). Springer, Berlin, Heidelberg.

[18] The Apache Groovy project, (2003-2017), “Apache groovy”. [Online]. Available: http: //www.

groovy-lang.org/

[19] Oracle, (2003-2017), “Java”, URL : https://www.java.com/fr/ [Accessed : 2017-07-20].

48 Computer Science & Information Technology (CS & IT)

[20] R. Hickey, (2017), “The clojure programming language”, URL: https://clojure.org/ [accessed: 2017-
02-20].

[21] Python, J. (2009). Python (programming language). Python (programming Language) 1 CPython 13

Python Software Foundation 15, 1.

[22] Kumar, S. A., & Simonsen, K. I. (2014, April). Towards a model-based development approach for

wireless sensor-actuator network protocols. In Proceedings of the 4th ACM SIGBED International
Workshop on Design, Modeling, and Evaluation of Cyber-Physical Systems (pp. 35-39). ACM.

[23] A. Viklund, (2011-2017), “Mixim”, URL: http://mixim.sourceforge.net/ [accessed: 2017-07-20].

[24] Somappa, A. A. K., & Simonsen, K. I. F. (2016). Model-based Development for MAC Protocols in

Industrial Wireless Sensor Networks. In PNSE@ Petri Nets (pp. 193-212).

[25] Kristensen, L. M., & Veiset, V. (2016, June). Transforming CPN Models into Code for TinyOS: A

Case Study of the RPL Protocol. In International Conference on Applications and Theory of Petri
Nets and Concurrency (pp. 135-154). Springer International Publishing.

[26] Levis, P., Lee, N., Welsh, M., & Culler, D. (2003, November). TOSSIM: Accurate and scalable

simulation of entire TinyOS applications. In Proceedings of the 1st international conference on
Embedded networked sensor systems (pp. 126-137). ACM.

[27] Tim Bray, Jean Paoli, C Michael Sperberg-McQueen, Eve Maler, and François Yergeau. Extensible

markup language (xml). World Wide Web Journal, 2(4):27–66, 1997.

APPENDIX A

Listing 3: Skeleton of the Packet Structure.

Listing 4: Skeleton of the Temperature Configuration

Computer Science & Information Technology (CS & IT) 49

Listing 5: Skeleton of Temperature Sensing Module

#include "packets.h"

module TempM{

 uses {

 interface Boot;

 interface Leds;

 interface Timer<TMilli> as T1;

 interface Timer<TMilli> as T2;

 interface Read<uint16_t> as TempRead;

 interface Packet;

 interface AMSend;

 interface SplitControl;

 }

}

implementation{

 uint16_t centigrade, fahrenheit;
 uint8_t tempBool;

 message_t _packet;

 event void Boot.booted(){
 call T1.startPeriodic(2000);

 call T2.startPeriodic(4000);

 call SplitControl.start();

 Leds.led0On;

 }

 event void SplitControl.startDone(error_t error) {

 if (error == SUCCESS) {

 call Leds.led0On();

 }

 else {

 call SplitControl.start();
 }

 }
 event void SplitControl.stopDone(error_t error) {

 }
 event void T1.fired(){

 if (!(call TempRead.read() == SUCCESS))
 call Leds.led0Off();

 }
 //construct the packet:

 void PreparePacket(uint16_t val){
 //obtain the packet pointer

 my_msg_t* msg = call Packet.getPayload(& _packet, sizeof(my_msg_t));
 // Specify the sequence number of the message

 msg->msg_id= TOS_NODE_ID;

 //affect the sensed information to the message value

 msg->msg_value=tempBool;

 }
 event void T2.fired(){

 PreparePacket(tempBool);
 call AMSend.send(AM_BROADCAST_ADDR, &_packet, sizeof(my_msg_t));

 }
 event void AMSend.sendDone(message_t *msg, error_t error) {

 ...
 }

 event void TempRead.readDone(error_t result, uint16_t val){
 centigrade = -39.6 + .01*val;

 fahrenheit = (9/5)*centigrade + 32;
 if (fahrenheit > 85){

 call Leds.led1On();
 tempBool = 1;

 } else {
 call Leds.led1Off();

 tempBool = 0;

 }}}

50 Computer Science & Information Technology (CS & IT)

Listing 6: Skeleton of Receiver Module.

#include "MsgStruct.h"

module ReceiveC{

 uses {

 interface Boot;
 interface Leds;

 interface Packet;

 interface AMPacket;

 interface SplitControl as AMControl;

 interface Receive;

 }

}

implementation{

 uint8_t tempBool;

 uint8_t humidBool;
 event void Boot.booted(){

 call SplitControl.start();

 }

 event void SplitControl.startDone(error_t error) {

 if (!(error == SUCCESS))

 call SplitControl.start();

 }

 event void SplitControl.stopDone(error_t error) {

 }
 event message_t * Receive.receive(message_t *msg,void *payload,uint8_t

len) {

 if (len == sizeof(my_msg_t)) {

 my_msg_t * incomingpacket = (my_msg_t*) payload;

 tempBool = incomingpacket->tempBool;

 humidBool = incomingpacket->humidBool;

 if (humidBool == 1) {

 call Leds.led0On();

 }

 else {
 call Leds.led0Off();

 }

 if (tempBool == 1) {

 call Leds.led1On();

 }

 else {

 call Leds.led1Off();

 }

 }

 return msg;
 }

}

Computer Science & Information Technology (CS & IT) 51

Listing 7: Skeleton of Humidity Sensor.

#include "packets.h"

module HumidityM{

 uses {
 interface Boot;

 interface Leds;
 interface Timer<TMilli> as T1;

 interface Timer<TMilli> as T2;

 interface Read<uint16_t> as HumidRead;

 interface Packet;

 interface AMSend;

 interface SplitControl;

 } }

implementation{

 //variables declaration

 uint16_t humidity;

 uint8_t HumidBool;
 message_t _packet;

 event void Boot.booted(){
 call T1.startPeriodic(2000);

 call T2.startPeriodic(4000);
 call SplitControl.start();

 Leds.led0On;
 }

 event void SplitControl.startDone(error_t error) {
 if (error == SUCCESS) {

 call Leds.led0On();
 }

 else {
 call SplitControl.start();

 }}
 event void SplitControl.stopDone(error_t error) {

 }

 //start the system, radio..
 event void TempTimer.fired(){

 if (!(call HumidRead.read() == SUCCESS))
 call Leds.led0Off();

 }
 //construct the packet:

 void PreparePacket(uint16_t val){
 //obtain the packet pointer

 my_msg_t* msg = call Packet.getPayload(& _packet, sizeof(my_msg_t));
 // Specify the sequence number of the message

 msg->msg_id= TOS_NODE_ID;
 //affect the sensed information to the message value

 msg->msg_value=HumidBool;
 }

 event void T2.fired(){
 //prepare packet

 PreparePacket(HumidBool);

 //send the packet

 call AMSend.send(AM_BROADCAST_ADDR, &_packet, sizeof(my_msg_t));

 }

 event void HumidRead.readDone(error_t result, uint16_t val){

 humidity = -4.0 + 0.0405*val + (-2.8 * pow(10.0,-6))*(pow(val,2));

 if (humidity > 25){
 call Leds.led0On();

 humidBool = 1;
 } else {

 call Leds.led0Off();
 humidBool = 0;

 } }

}

52 Computer Science & Information Technology (CS & IT)

Listing 8 : Skeleton of Humidity Configuration

configuration SenseC{

}

implementation{

 components MainC, LedsC;

 components TempM;

 components ActiveMessageC;

 components new AMSenderC(AM_RADIO);
 components new TimerMilliC() as TempTimer;

 components new TimerMilliC() as NetworkTimer;

 components SerialPrintfC;

 components new SensirionSht11C() as HumidRead;

 TempM.Boot -> MainC;

 TempM.Leds -> LedsC;

 TempM.T1 -> TempTimer;
 TempM.T2 -> NetworkTimer;

 TempM.HumidRead -> HumidRead.Humidity;

 TempM.Packet -> AMSenderC;
 TempM.AMSend -> AMSenderC;

 TempM.AMControl -> ActiveMessageC;

}

