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ABSTRACT 

 
In today's analytics-driven world, fully replicated isolated databases provide much-needed 

database availability and compute scalability but at the cost of storage scalability, an issue that 

is addressed by partially replicated isolated databases. However, a partially replicated 

database that is optimal at the time of design is soon made inefficient by changing business 

needs, products & services it offers, datasets and query workloads. To this address this issue, 

we introduce the notion of migration cost as an additional factor that influences the design of a 

partially replicated databases. In this paper, we formalize the notion of migration cost and 

present a new cost-based objective function to partition and allocate data elements across 

available databases. Further, we discuss its implementation in the context of Uber and 

demonstrate its effectiveness based on a 10-week simulation study. 
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1. INTRODUCTION 

 
In today’s data-driven economy, the design of a holistic database solution is governed by three 

factors: database availability[2, 7], compute scalability [5, 10]and storage scalability. Database 

availability is concerned with the up-time of the database and its ability to execute requests. 

Compute scalability is concerned with the query throughput of the database. Lastly, storage 

scalability is concerned with the amount of data that can be managed by the database. Different 

approaches exist to maximize the three different factors. One of the approaches to maximize 

database availability and compute scalability is to have a multiple fully replicated isolated 

databases. Fully replicated isolated databases consists of multiple isolated databases with the 

same data copied across all the databases . Further, the connection between the client applications 

and the databases is often abstracted using a thin service layer. Such a database design helps 

achieve a high degree of database availability by routing queries to operational databases and 

compute scalability by distributing the query load across all the operational databases[13].  

 

Nevertheless, the compute scalability achieved using the fully replicated databases doesn’t grow 

linearly with the number of database replications. Each new replication of the data requires 

additional copying of data from one database to another, and thereby significant amount of 

resources are wasted on reading and writing data[11]. Furthermore, while the fully replicated 

database system helps achieve a high degree of database availability and compute scalability, it 

fails to provide storage scalability. At Uber, achieving a high degree of storage scalability along 
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with database availability and compute scalability is important for multiple reasons. First, we rely 

on Vertica, a fast analytic engine, to munge over petabytes of data and provide critical business 

insights as quickly as possible; the mean average time to complete a query is about 17 seconds. 

Further, we have multiple fully replicated Vertica database cluster to maximize database 

availability and to handle millions of queries on a daily basis. However, Vertica’s licensing fee is 

tied to the amount of data stored. As a result, each additional replication significantly increases 

the licensing cost.  In particular, since the number of replications is governed by the compute 

scalability requirement rather than the database availability, there is a significant amount of 

storage, and licensing fee is wasted due to additional replications of all the data elements in the 

case of a fully replicated isolated databases. The other reason to maximize storage utilization is 

that Vertica operates at its peak performance on a limited amount of data. Full replication thereby 

limits our ability to maximize the amount of data that can be quickly processed across all the 

databases. Apart from storage scalability, a fully replicated isolated database system suffer from 

other challenges as well such as data consistency management[9], non-linear computational 

growth as each additional replication requires additional computational resource for writing and 

managing data[12].   

 

A natural solution to achieve database availability, compute scalability and storage scalability is a 

partially replicated databases system. As shown in Figure 1, a partially replicated databases 

optimize for storage by copying different overlapping subsets of datasets to different databases.  

There are many different proposed approaches for determining an optimal partially replicated 

database configuration, but one challenge that remains unattended is the ephemeral nature of 

partially replicated isolated databases. Different business units grow at different rates and thereby 

associated data elements. As a result, partial database configurations eventually become 

imbalanced in terms of data distributions across databases. Furthermore, as business evolve so the 

analytical requirements. As a result, the query patterns might change over time, causing 

imbalances in the distribution of the query load. As a result, a partial database configuration 

eventually becomes sub-optimal and thereby requires rebalancing of partial databases by moving 

data elements from databases to another. This migration of data elements is termed here as 

“migration cost.”  

 

 

Figure 1. Sample Configuration of a fully replicated isolated databases and a partially replicated isolated 

databases. All data elements are replicated across all the databases in the case of a fully replicated 
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databases. In the case of a partially replicated isolated databases, different datasets contains different 

overlapping sets of data elements.  

In this paper, we present a migration cost based formalization of partially replicated isolated 

databases and discuss its implementation in the context of Uber. In Section 2, we discuss prior 

approaches for designing partially replicated databases. In section 3, we discuss our formalization 

of the problem that explicitly incorporates migration cost for determining the optimal placement 

of data elements across available databases. In Section 4, we present the implementation details 

of our ephemeral partially replicated databases at Uber and the savings achieved as compared to 

the fully replicated databases. Lastly, in Section 5, we present our conclusion. Note that the scope 

of this paper is limited to isolated databases i.e. to complete a given query, all the required data 

elements should be part of a single database.  

2. RELATED WORK 

A partially replicated database system is described here as a system of multiple isolated databases 

with overlapping sets of data elements. Since these databases are isolated, all the data elements 

necessary to satisfy a query are required to be available on a single database. Designing a partially 

replicated database system is usually a two-step process involving partitioning and allocation[11]. 

Partitioning is concerned with generating partially overlapping sets of data elements. Previous 

efforts on partitioning mainly focused on “data marts”, partitioning data elements to address 

specific problems and is often organized around various teams or products [3]. A more data-

driven approach to partition is presented in [1]. In general, the data-driven approach uses 

historical query patterns to identify strongly correlated sets of data elements. Depending on how 

data elements are defined, these data-driven approaches can generate horizontal (dissecting data 

by rows) [4]or vertical (dissecting data by columns/attributes) partitioning of the data[1]. In 

contrast to partitioning, the allocation problem is concerned with assigning partitions of data 

elements to available databases and often studied as an optimization problem. 

In [11], partitioning and allocation are considered as a single problem and proposed a data-driven 

approach to generate a partially replicated database configuration. The objective of their data-

driven solution is to balance storage requirement and query load across various isolated 

databases. Queries are grouped into various classes based on the different sets of data elements 

required to satisfy a query and are further assigned compute cost. Then the objective for 

generating partially replicated database configuration is to assign these different classes of queries 

to different databases to balance data size and query load across all the databases.  

One important aspect missing in previous approaches is the lack of consideration to the 

ephemeral nature of partially replicated database systems. Different product or services offered by 

a business grow at a different rate and thereby associated data size. Further, to maintain the 

competitive edge, business constantly add new services and products as well deprecate some. As 

a result, data elements and associated business queries continuously change. As a result, partially 

replicated databases often needs to be re-configured to adapt to the changing business and uneven 

workload. The cost of transitioning from one state of a partially replicated database to another is 

termed here as the migration cost.  A high migration cost negatively hurts database availability 

and compute scalability as a significant amount of computing resources are spent on migrating 

data elements from one database to another. In this paper, we extend the idea presented in the 

above approaches and especially in [11] to explicitly account for the migration cost.  

3. MIGRATION AWARE PARTIALLY REPLICATED DATABASES 

Four factors influence the design of partially replicated isolated databases: database availability, 

compute scalability, storage scalability and migration cost. We approach the design of the 

partially replicated isolated databases as a single optimization problem that explicitly models the 

influence of all the four factors. Similar to[6, 11], our approach combines partitioning and 
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allocation steps in a single optimization problem. However, we first introduce key elements of 

our formalization in Section 3.1. Thereby, in Section 3.2, we introduce cost functions associated 

with each of the four factors and combine them into a single objective function. 

3.1. Notations 

Below are the various notations used while constructing our objective function.  

1. Database (�): Let N represent the number of available databases. These databases are 

isolated i.e. that operate independently of each other. Further, these N databases can be 

either homogenous (same hardware configuration) or heterogeneous (different hardware 

configuration).  

 

2. Disk Capacity (�): Let real vector D represent the disk space capacity for each of the N 

databases.  

 

3. Compute Capacity (�): Let real vector P represent the compute capacity for each of the N 

databases. As compared to measuring disk capacity,estimating compute capacity is often 

a challenge and depends on multiple factors including hardware and software 

configuration. For the purpose of this paper, we measure compute capacity in terms of 

maximum query load that a database can handle. In the case of heterogeneous database 

system, an optimal query load for a database can be estimated using the equation shown 

below:  

 

 �� =
�	
��

�
��� 	�	[2]Error! 	Bookmark	not	de"ined. 86400

)*+,��
�-�
./0��  (1) 

Above, �	
��

�
��� represents observed historical query concurrency and 

)*+,��
�-�
./0�� represents the average query runtime on database / to run a query 

on database /. Thus, �� represents the average number of queries that a database can 

handle on a daily basis. In the case of homogenous databases, one can estimate �� by 

distributing existing query volume equally across all the databases i.e. 

�� = 1	.23,��
/�4��
�2�/�. 

4. Data Elements (T): A data element is defined abstractly over here and can indicate a 

table, rows of a table or columns of a table. Depending on the definition of data elements, 

the proposed algorithm will either generate partitions similar to data mart, horizontal or 

vertical partitioning, respectively. As a result, often the definition of data element is 

constraint by engineering feasibility. For instance, if data elements are described as set of 

rows then migration of a partially replicated databases from one state to another would 

involve migrating rows of a table. For the explanation purpose, we here defined data 

elements as individual tables and represent the set of tables as T. Thus 1� represents a 

specific table /. 
 

5. Data Element Size (O): Measured in the same unit as �, 6� captures the disk space 

occupied by the data element /. 
 

6. Query Classes (,): A query involves operating on a set of data elements. Thus, one can 

group queries based on the set of data elements, i.e. queries using the same set of data 

elements are grouped together. For instance, if a query q requires three data elements, say 
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17, 19	2
:	1;, we can represent q by the set of <17, 19, 1;=and further group all the queries 

this particular set of data elements into one class, referred in [11] as query class. Let Q 

represent the set of query classes. Note that query classes can have different number of 

data elements and can be overlapping.  

 

7. Data Element and Query Class Mapping (�): Let C be a binary matrix that describes 

mapping between query classes and data elements. Thus, if �<>,?= = 1	∀B ∈ ,, . ∈ 1 

indicates that query class q requires data element t.  

 

8. Query Class Weight (D): Expressed in the same unit as that of P, D� represents compute 

capacity needed for the query class ,�. Here, �� is measured in terms of daily query load 

and, thereby,D� represents average daily number of queries associated with query class 

,�. 
 

9. Replication factor (
): Canonically the term replication factor is used to indicate the 

minimum number of replicas of data elements. However, we consider it an aspect of a 

query class and represents the minimum number of isolated databases that should be able 

to handle a given query class. We find this interpretation more suitable as it ensures not 

only that data elements are replicated at-least 
 times but that each query class is covered 

by at-least by
 databases.  

Apart from the above variables, we have two decision variables �	and E. �, a binary matrix, 

represents assignment of data elements to databases;�?,F = 1	indicates that the data element . is 

assigned to a database 
, and �?,F = 0	otherwise. E, also a binary matrix, represents assignment 

of query classes to databases. Similar to X, E>,F = 1 indicates query class B assigned to database 


, and E>,F = 0 otherwise. Additionally, we define �′ as the existing state of assignment of 1 

databases to � databases. This will be used to determine the migration cost by comparing � to �H. 
3.2. Cost Function 

As discussed above, four factors influence the design of partially replicated isolated databases: 

database availability, compute scalability, storage scalability and migration cost. Database 

availability is a function of the replication factor. As the replication factor increases, database 

availability increases and vice-versa. In our approach, we assume that database availability is a 

given parameter and hence one doesn't need to explicitly model for database availability.  For the 

remaining three factors, we propose a simple mixed integer quadratic constraint formalization. 

Minimizing this formalization provides an optimal partitioning and allocation strategy to 

uniformly distribute compute and storage utilization across all the available databases. As 

explained below, the proposed formalization is a linear combination of three individual cost 

functions associated with the compute scalability, storage scalability and migration cost. 

1. Storage Utilization: One of the primary motivations of a partially replicated isolated 

databases is to minimizeoverall storage consumption across N databases. In practice, 

however, another important constraint is that disk utilization across N databases to be 

uniformly distributed. Disk utilization of a database is described as the percentage of the 

total disk space that is consumed. Given the data element assignment matrix X, the 

percentage disk utilized4�on a database /	can be computed as:  
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 4� =
∑ �?,�6?
|K|
?L7
��

	∀	. ∈ 1 (2) 

Since � is a binary matrix, the numerator in the above equation represents the sum of disk 

space required by the data elements assigned to database /. Normalized by total disk 

space capacity of database /, 4� represents the percentage of disk space utilized by the all 

the data elements assigned to database /. 
2. Compute Utilization: Compute scalability is achieved by evenly distributing the query 

load across � databases in proportion to individual databases compute capacity �. Thus, 

compute utilization of database is described as the percentage of compute capacity that 

will be utilized by queries assigned to the given database. Given the query assignment 

binary matrix E, the percentage query load 3� on a database /compared to its compute 

capacity ��can be computed as: 

 3� =
∑ E>,�D>
|M|
>L7

�� 	∀	B ∈ , (3) 

One caveat with the above the cost function is that it assigns the complete weightD> of 

query class B to a single database. However, in practice, queries associated with a 

particular query class can addressed by 
 databases. However, we prefer the above 

formalization as it models the worst case scenario where only one of 
databases that can 

handle a given query class is available and thereby has to deal with the complete load of 

query class q.  

3. Migration Cost: Migration cost is associated with the cost of moving from one state of 

partially replicated databases to another, i.e. migration from state �H to X. Migration 

involves two types of operations on databases: writing new data elements that are in � 

but not in �′ and deleting data elements that were in �′ but not in in �. Since writing is a 

much more expensive operation as compared to deleting, we define migration cost based 

on the cost of writing. Further, the cost of writing is directly proportional to the size of 

the data element. Hence, as shown in eqn. 5, we define the migration cost as the total size 

of new data element that will be written on a database normalized by the acceptable 

amount of writing N�on database /, as defined by the database admin. Normalizing 

migration cost by N helps in two ways. First, it helps database admin enable control the 

influence of the migration cost. Second, it makes the cost function unitless and therefore 

comparable to other cost functions (eqn. 3 and 4). 

 0� =
∑ 6?O1 − �H?,�Q�?,�|K|
?L7

N�  (4) 

In the above expression, O1 − �H?,�Q�?,� identifies new data elements that were previously 

not present on database / but are required in the new state �.  

Based on the above three individual cost function, we now define our objective function as 

minimizing linear combination of the maximum of each of the individual cost functions, i.e.: 
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 R(�, E) = 	min	(S + U + 	V) (5) 

where  

• S = max	(47, 4X, … , 4Z) 
• U = max	(37, 3X, … , 3Z) 
• V = max(07, 0X, … ,0Z) 

subject to: 

1. �?,F ∈ 		 <0, 1=	∀	. ∈ 1, 
 ∈ [�]	 
 

2. E>,F ∈ 		 <0, 1=	∀	B ∈ ,, 
 ∈ [�]	 
 

3. ∑ E>,FZFL7 ≥ 
	 
 

4. �?,F ≥ 		E>,F	∀	B ∈ ,	, . ∈ 1, 
 ∈ [�]	 
In practice, one prefers a state with minimal variance in terms of percentage disk utilization and 

compute utilization relative to individual databases’ disk and compute capacity. However, 

minimizing variance doesn't guarantee optimal utilization of resources. For instance, assuming � 

homogeneous databases, zero variance can be achieved by replicating all the data elements across 

all the databases. However, such a state will be far from an optimal solution. Hence, along with 

minimizing variance, one also need to minimize total disk utilization. Instead, as defined by S, 

minimizing maximum disk utilization across N databases achieves both the objectives. The same 

argument goes for U and V. 

Another important aspect of our objective function shown in eqn. 6 are the four constraints. While 

constraint 1 and 2 ensure that the data element � and query class E assignment matrix are binary, 

constraint 3 ensures database availability by making sure that each query class is assigned to at-

least 
 databases. The fourth constraint ensures that a query assigned to a database / can only be 

successfully served if all the data elements required the query are available on database 
. Also, 

note that constraint 3 and 4 together ensure that each data element is replicated across r databases. 

If desired, similar to constraint 3, one can also add a constraint to enforce a different replication 

factor, say 
′, for data elements. 

We emphasize that the binary matrixE reproduces the set of databases that could process a query 

class, rather than the actual assignment of query workload across databases. This assignment is 

handled dynamically to load balance with knowledge of the current system load, rather than 

statically. 

4. RESULTS 

With millions of Uber trips every day, Uber infrastructure handles petabytes of data. As shown 

inFigure 2, the data is streamed through Apache Kafka and after that stored in the Hadoop 

Distributed File System (HDFS). Next, Hive is used to clean and create a modeled data. Data 

analysis on HDFS using Hive or Presto is usually slow, and hence core business data is further 

copied to a system of fully replicated isolated Vertica databases. Vertica is a proprietary in-
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memory database that provides near real-time interactive query experience; 90% of queries 

complete within 20 seconds as compared to about a minute in the case of Presto.  

 

Figure 2. Existing data infrastructure setup at Uber.  Data flows from Kafka to HDFS and eventually 

replicated across multiple isolated Vertica databases. Clients connect to the databases through a middle 

layer that helps distribute query load across available databases.  

In the case of Uber, the compute scalability requirement mainly drives the need for multiple fully 

replicated isolated Vertica databases system. But, as discussed before, this compute scalability 

comes at the cost of storage scalability. Apart from optimizing for database availability and 

compute scalability, achieving a high degree of storage scalability is critical for Uber for two 

reasons. First, as discussed in Section 1, the additional storage required due to full replication of 

all the data elements cost millions of additional dollars in terms of licensing fee. Second, there is 

a limit on how much data can be managed by a single Vertica database to provide near real-time 

interactive query experience. To address these two major issues, we explored the option of 

partially replicated isolated databases. The architecture diagram below shows the major 

component of our solution. 

 

As compared to Figure 2, one key difference is an addition of “data element assignment manager” 

that informs other components about the placement of the data elements to different databases. 

The middle layer communicates with the data element assignment manager to determine and 

route the query to one of the candidate databases that contains all the data elements needed by the 

query. Every week, based on last four weeks of historical queries, the data element assignment 

manager generates a new assignment matrix. The assignment matrix is then communicated to the 

data loader which is responsible for migrating databases from the existing state to the new state. 



Computer Science & Information Technology (CS & IT)                                     9 

 

 
Figure 3. Architecture of our ephemeral partially replicated isolated Vertica databases. The key component 

is data element assignment manager that re-computes optimal assignment for each data element every 

week. 

In order to evaluate our approach, we ran a ten-week simulation on historical queries. For the 

simulation, we assumed five homogenous Vertica databases (i.e. N = 5) and a replication factor of 

2 (i.e. r = 2). As described in Section 3.1, historical queries are grouped into different query 

classes based on the set of referred tables. For each query class, we further used the average daily 

number of queries based on the last four weeks of historical queries as a representation for the 

query class weight.  Further, we approximate compute capacity of each database �� to be equal to 

the total query workload distributed equally across � databases i.e. �� = ∑ \]
|^|
]_`
Z  

One of the challenges we faced was the scale of the optimization problem formulated in eqn. 6. 

With hundreds of tables and thousands of query classes, solving a mixed integer quadratic 

constraint optimization problem with thousands of decision variables is a non-trivial task. To 

scale down the problem, we relied on empirical observations to make the optimization problem 

formulated in eqn. 6 substantially simpler, thereby obtaining a near optimal solution within a few 

minutes using the commercial mixed integer linear programming solver, Gurobi[8]. First as 

shown in figure 4, the top 10% biggest tables account for almost 90% of the total data. Thus most 

of the disk efficiency comes by an optimal placement of these big tables. Based on this 

observation we define our set of data elements T to include only these top tables and thereby 

significantly reduce the size of the X matrix. The remaining 90% of the tables are fully replicated 

as the potential gains in terms of disk utilization are insignificant. 
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Figure 4. Cumulative percentage of data by percentage of tables in descending order by size. Thus, biggest 

10% account for almost 90% of the total data.

Second, a side effect of restricting the set of data elements to the top 10% bigge

significantly reduces the number of query classes one has to consider. Since query class definition 

is based on data elements in 1
definition. If all the data elements needed by the query class are outside the scope of 

drop the query class itself from consideration. This is justified since data elements outside of 

are fully replicated across all the databases and hence the queries can be executed on any of the 

databases. Figure 5 shows the number of query classes as a function of the percentage of tables 

included in 1. Thus, by considering only the top 10% biggest tables (the same as 

considered within our first improvement), the number of query classes decreases from almost 

100K to 40K. This significantly reduces the size of the 

Figure 5. Number of query classes as a function of numb

consider the top 10% biggest tables as part of T, the total number of query classes drop from almost 100K 
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10% account for almost 90% of the total data. 

Second, a side effect of restricting the set of data elements to the top 10% biggest tables is that it 

significantly reduces the number of query classes one has to consider. Since query class definition 

1, any data element not in 1 is dropped from the query class 

definition. If all the data elements needed by the query class are outside the scope of 

drop the query class itself from consideration. This is justified since data elements outside of 

ross all the databases and hence the queries can be executed on any of the 

databases. Figure 5 shows the number of query classes as a function of the percentage of tables 

. Thus, by considering only the top 10% biggest tables (the same as 

considered within our first improvement), the number of query classes decreases from almost 

100K to 40K. This significantly reduces the size of the E matrix. 

 

. Number of query classes as a function of number of tables considered as part of T. Thus, if we 

consider the top 10% biggest tables as part of T, the total number of query classes drop from almost 100K 

to 40K. 

. Cumulative percentage of data by percentage of tables in descending order by size. Thus, biggest 

st tables is that it 

significantly reduces the number of query classes one has to consider. Since query class definition 

is dropped from the query class 

definition. If all the data elements needed by the query class are outside the scope of 1, then we 

drop the query class itself from consideration. This is justified since data elements outside of 1 

ross all the databases and hence the queries can be executed on any of the � 

databases. Figure 5 shows the number of query classes as a function of the percentage of tables 

. Thus, by considering only the top 10% biggest tables (the same as the set tables 

considered within our first improvement), the number of query classes decreases from almost 

er of tables considered as part of T. Thus, if we 

consider the top 10% biggest tables as part of T, the total number of query classes drop from almost 100K 
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Apart from the above considerations, there are new tables that require special handling. Due to a 

lack of historical data, it is difficult to assign new tables to databases in an optimal way. Hence, 

for the first two weeks since the creation of a table, we fully replicate new tables across all the 

databases. This approach helps reduce migration cost associated with changing query patterns 

related to new tables. From the third week, new tables are treated as regular tables and considered 

for optimal allocation only if it makes it into top 10% biggest tables.  

For the simulation, we generated a new data element assignment matrix X at the beginning of 

each week and evaluated the performance of our recommended assignment based on proceeding 

weeks queries. As described below, we measured the performance of the assignment on four 

different criteria:  

1. Savings In Disk Utilization 

One of the main objectives of a partially replicated isolated database is to minimize percentage 

disk utilization of individual databases. Since, our objective is to measure savings in disk space as 

compared to a fully replicated databases, we define savings in disk utilization as: 

 �/4ab./3/c2./	
� = 	1 −	∑ �?,�6?|K|
?L7
∑ 6?|K|
?L7

 (6) 

In eqn. 7, the numerator represents the size of data elements assigned to database /. The 

denominator represents the total size of all the data elements. Based on the simulation results, we 

observed that the median percentage disk savings on an individual database ranged between 58% 

and 62%. Thus, as compared to fully replicated database, we are able to recover almost 40% disk 

space. Additionally one can notice from the range that the disk savings is almost evenly 

distributed across databases. 

2. Migration Cost:  

As described in Section 3.2, migration cost is concerned with the size of new data elements that 

were previously not assigned to a given database and are required in the new state and can be 

computed as:  

 V/+
2./	
�	4.� = 	dO1 − �?,�H Q�?,�6?
|K|

?L7
 (7) 

Over the 10 week simulation, the median migration cost for the five databases ranged from 0.07 

TB to 1.5 TB. This was well within our acceptable level of migration N that was set to 5TB. Note 

that the migration cost for the first week is zero because we are migrating from the fully 

replicated database to partially replicated database and hence one has to only delete data elements 

in order to move to a new state.  

3. Query Load:  

It refers to the percentage of queries from the following week that will be assigned to a database. 

While, in the actual implementation, the placement of a query is influenced by the current load on 

candidate databases, for the simulation we randomly assigned the query to one of the candidate 

databases. The median query load for the five databases ranged from 19.14% to 21%. 
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4. Dropped Queries:  

One of the dangers of a partially replicated isolated database is the lack of all the required data 

elements by a query on a single database. In this case, the query cannot be satisfied by any of the 

databases. Over the 10 week simulation, the maximum number of queries dropped in a week was 

11. As compared to almost half a million queries that were successfully handled, missing 11 

queries was insignificant and not a concern. 

5. CONCLUSION 

Traditionally, the design of partially replicated databases has focused on increasing storage 

scalability but without accounting for the migration cost. In this paper, we formalized the notion 

of the migration cost and presented a new cost-based objective function that along with other 

factor optimizes the allocation of data elements for migration as well. Based on 10-week 

simulation results on actual query load on the Vertica database, we demonstrate that this 

migration based formalization not only helps achieve significant savings in terms of disk 

utilization but also optimizes for migration. As compared to a fully replicated isolated databases, 

disk utilization dropped by almost 40%. Further, the median migration cost ranges from 0.07 TB 

to 1TB across different databases. Although we did observe 11 dropped queries in a week, the 

number of dropped queries were insignificant as compared to almost half a million queries that 

our system is able to handle correctly and all the other potential gains in terms of disk utilization. 
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