

David C. Wyld et al. (Eds) : NeCoM, SEAS, SP, CMCA - 2018
pp. 49–68, 2018. © CS & IT-CSCP 2018 DOI : 10.5121/csit.2018.80904

TBFV-M: TESTING-BASED FORMAL

VERIFICATION FOR SYSML ACTIVITY

DIAGRAMS

Yufei Yin*,+ Shaoying Liu* and Yixiang Chen+

*Hosei University, Tokyo, Japan

+East China Normal University, Shanghai, China

ABSTRACT

SysML activity diagrams are often used as models for software systems and its correctness is

likely to significantly affect the reliability of the implementation. However, how to effectively

verify the correctness of SysML diagrams still remains a challenge. In this paper, we propose a

testing-based formal verification (TBFV) approach to the verification of SysML diagrams,

called TBFV-M, by creatively applying the existing TBFV approach for code verification. We

describe the principle of TBFV-M and present a case study to demonstrate its feasibility and

usability. Finally, we conclude the paper and point out future research directions.

KEYWORDS

SysML activity diagrams, TBFV, test path generation, formal verification of SysML diagram

1. INTRODUCTION

Model-Based Systems Engineering (MBSE) [1] is often applied to develop large scale software
systems in order to effectively ensure their reliability and to reduce the cost for testing and
verification. The systems modelling language SysML [2, 3] can support effective use of MBSE
due to its well-designed mechanism for creating object-oriented models that incorporate not only
software, but also people, material and other physical resources. In MBSE, SysML models are
often used as the design for code. Therefore, its correctness in terms of meeting the users’
requirements becomes critical to ensure the high reliability of the code. Unfortunately, to the best
of our knowledge from the literature, there are few tools to support the verification of SysML
models [4, 5] in particular rigorous ways of verification.

Testing-Based Formal Verification (TBFV) proposed by Liu [6-8] shows a rigorous, systematic,
and effective technique for the verification and validation of code. Its primary characteristic is the
integration of the specification-based testing approach and Hoare logic for correctness proof of
code to guarantee the correctness of all the traversed program paths during testing. The advantage
of TBFV is its potential and capability of achieving full automation for verification through
testing. However, the current TBFV is mainly designed for sequential code in which all of the
details are formally expressed, and there is no research on applying it to verify SysML models
yet. In this paper, we discuss how the existing TBFV can be applied to SysML models for their
verification and we use TBFV-M (testing-based formal verification for models) to represent the
newly developed approach. Since SysML Activity Diagrams can model the systems dynamic
behaviour and describe complex control and parallel activities, which are similar to code but with
additional constructs such as parallel execution, our discussion in this paper focuses on the
activity diagrams.

50 Computer Science & Information Technology (CS & IT)

The essential idea of TBFV-M is as follows. All of the functional scenarios are first extracted
from a given formal specification defining the users’ requirements where each functional scenario
defines a meaningful functional behaviour of the system. Meanwhile, test paths are generated
from corresponding SysML Activity Diagrams waiting to be verified. Then, test paths are
matched with functional scenarios by comparing the collection of decision condition of each test
path and the guard condition of the functional scenario. After this, the pre-condition of the test
path is automatically derived by applying the assignment axiom in Hoare logic based on the
functional scenario. Finally, the implication of the pre-condition of the specification in
conjunction with the guard condition of the functional scenario to the derived pre-condition of the
path is verified through automatic proof or testing to determine whether the path contains bugs.
The details of this approach will be discussed from Section 5.

The remainder of the article will detail the TBFV-M method. Section 2 presents related work we
have referenced. Section 3 introduces the Testing-Based Formal Verification technique for the
verification and validation of code. Section 4 mainly details the whole development process of
using Model-Based Systems Engineering and the application scenarios of TBFV-M method.
Section 5 characterizes the definitions of basic terms and concepts and section 6 describes the
principle of TBFV-M, showing the core technology of TBFV-M. Section 7 uses one case study to
present the key point of TBFV-M. Finally. The details of the implementation of the algorithm are
presented in Section 8. Section 9 concludes the paper.

2. RELATED WORK

In this section, we briefly review the existing work related to our study. For the sake of space, we
focus on those we have referenced during our research. We divide the related work into four
different parts, including testing-based verification, requirements verification, verification using
Hoare Logic and test case generation.

Considering the shortcoming of formal verification based on Hoare logic being hard to automate,
Liu proposed the TBFV (Testing-Based Formal Verification) method by combining specification-
based testing with formal verification [6]. This method not only take the advantage of full
automation for testing, but also the efficiency of error detection with formal verification. Liu also
designed a group of algorithms [9] for test cases generation from formal specification written in
SOFL [10]. A supporting tool [8] is also developed. These efforts have significantly improved the
applicability of formal verification in industrial settings.

Franco Raimondi [11] addressed the problem of verifying planning domains written in the
Planning Domain Definition Language (PDDL). First, he translated test cases into planning goals,
then verified planning domains using the planner. A tool PDVer is also generated. In this paper,
testing is also used during verification and the effectiveness and the usability is improved.

Stefano Marrone [12, 13] designed a Model-Driven Engineering approach, in which formal
models are constructed and test cases are generated from UML model, utilizing UML profiles and
model transformation algorithms, automatically. As they claimed, formal models can be used for
quantitative analysis of non-functional properties, while test cases can be used for model
checking. A railway signalling example is shown to introduce its integration, usability and
reduction of manual activities.

Feng Liang [14] proposed a vVDR (Virtual Verification of Designs against Requirements)
approach for verifying a system with its requirement. In his research, the system is modeled in
Modelica, and requirement verification scenarios are specified in ModelicaML, an UML profile
and a language extension for Modelica. vVDR approach guarantees that all requirements can be

Computer Science & Information Technology (CS & IT) 51

verified by running this scenario automatically. However, the deficiency appears when the
number of requirements and scenarios increase.

Ralf Sasse [15] designed a tool called Java+ITP to verify a subset of the Java language. During
the verification process, Maude-based continuation passing style (CPS) is used to rewrite the
logical semantics of Java, and they also developed CPSbased Hoare Logic rules to justify the
correctness of the rewritten fragment. Ralf Sassi’s tool provides an extensibility of Hoare logics,
but exceptions and objects should be considered in the future research.

Magnus O. Myreen [16] used Hoare Logic to deal with machine code. They designed a
mechanized Hoare-style programming logic framework to accommodate the restrictions and
features present in real machine-code, such as finite memory, data and code in the same memory
space. ARM machine-code now can be verified using the proposed logic.

Jonathan Lasalle [17] utilized the existing UML/OCL Model-Based Test generation tool,
Smartesting Test DesignetTM. He designed rewriting rules to translate a SysML model into an
equivalent UML model. The advantage of this process is that we can use the existing UML tools
to handle the SysML model.

 Ashalatha Nayak [18] introduced an approach to transform the particular Activity Diagram into a
model that can be used for testing, called ITM, based on its structure characteristics. The
advantage of using ITM is that it can simplify the process of extracting and analyzing test
scenarios based on the coverage criteria. However, it also has limitations on processing
unstructured Activity Diagram because the unstructured Activity Diagrams shape is out of
structure.

Oluwatolani Oluwagbemi [19] proposed a new concept called activity ow tree (AFT) and it can
store the information obtained by traversing the activity diagram. Then, AFT is used as an
intermediate expression to generate test cases automatically. They designed the transformation
and generation algorithm and compared their achievement with the work done by the
predecessors.

Inspired by Liu’s work, we apply and extend the TBFV approach to models and propose the
TBFV-M. A model is more intuitive than a formal specification because it requires less relevant
background knowledge and is easier to communicate with customers. TBFV approach shows the
treatment of code, while TBFV-M approach deals with SysML Activity Diagrams. And different
with Feng Liang’s work, TBFV-M approach do not use other supporting tools, like Modelica, we
merely use Hoare Logic to do the verification. Referring to test case generation, TBFV- M
approach can deal with unstructured diagrams, which may have stronger processing power than
existing approaches.

3. INTRODUCTION OF TBFV FOR CODE

TBFV is a novel technique that makes good use of Hoare logic to strengthen testing. The essential
idea is first to use specification-based testing to discover all traversed program paths and then to
use Hoare logic to prove their correctness. During the proof process, all errors on the paths can be
detected.

Testing is a practical technique for detecting program errors. A strong point of testing superior to
formal correctness verification is that it is much easier to be performed automatically if formal
specifications are adopted [20], but a weak point is that existing errors on a program path may

52 Computer Science & Information Technology (CS & IT)

still not be uncovered even if it has been traversed using a test case. TBFV takes advantage of
testing, realized full automation for error detection efficiency.

TBFV is a specific specification-based testing approach that takes both the precondition and post-
condition into account in test case generation [21]. It treats a specification as a disjunction of
functional scenarios (FS), and to generate test sets and analyse test results based on the functional
scenarios. A functional scenario is a logical expression that tells clearly what condition is used to
constrain the output when the input satisfies some condition. To precisely describe this strategy,
we first need to introduce functional scenario. Spre and Spost denote the pre- and post-conditions of
operation S. Let:

 Spost = (G1 D1) (G2 D2) … (Gn Dn) (1)

Gi and Di (i 1, …, n) are two predicates, called guard condition and defining condition,
respectively. The definition of functional scenarios and FSF (functional scenario form) are list
below:

 Functional Scenario = Spre Gi Di (2)

In the definition of functional scenario, Spre Gi Di is treated as a scenario: when Spre Gi is
satisfied by the initial state (or intuitively by the input variables), the final state (or the output

variables) is defined by the defining condition Di. The conjunction Spre Gi is known as the test
condition of the scenario, which serves as the basis for test case generation from this scenario.

 FSF = (Spre G1 D1) (Spre G2 D2) … (Spre Gn Dn) (3)

A systematic transformation procedure, algorithm, and software tool support for deriving an FSF
from a pre-post style specification written in SOFL have been developed in our previous work
[22]. In the case study section, we will show an example to detail FSF generation. Test cases can
be generated from FSF. TBFV has three main techniques. First, generate test cases from
specification. Second, form path triple and the definition are below:

 {Spre Gi}P { Di} (4)

P is called a program segment, which consists of decision (i.e., a predicate), an assignment, a
return statement, or a printing statement. It means that if the pre-condition Spre and the guard
condition Gi of the program are both true before path P is executed, the post-condition Di of path
P will be true on its termination.

Finally, repeatedly apply the axiom for assignment to derive a pre-assertion, denoted by Ppre. And

the correctness of the specific path is transformed into the implication Spre ∧ Gi → Spre. If the

implication can be proved, it means that no error exists on the path; otherwise, it indicates the
existence of some error on the path.

4. TBFV-M IN MBSE

Model-Based Systems Engineering (MBSE) combines process and analysis with architecture. In
the last decade, the model-driven approach for software development has gained a growing
interest of both industry and research communities as it promises easy automation and reduced
time to market [23]. Because of the graphical notation for defining system design as nodes and
edge diagrams, SysML model addresses the ease of adoption amongst engineers [24].

Computer Science & Information Technology (CS & IT) 53

Figure 1. TBFV-M usage scenario

In the development process using MBSE, as shown below, the users’ requirements are obtained
first and the requirement document is usually written in natural language. This document is not
only difficult for developers to understand, but also may contain ambiguities and other problems.

To obtain requirements without ambiguities, we may generate a SysML Model. During the
model-driven development process, we use the SysML Model Diagram to communicate with the
user, because it does not contain many mathematical symbols and syntax. In the SysML
modelling phase, we will refine the SysML diagram, involved in the SysML model and
specification.

During the Model-Driven process, model is an important medium for the Model based system
engineering development. The TBFV-M method is mainly used to verify whether SysML
Activity Diagram model meets the user's requirements written in SOFL (Structured-Object-
oriented-Formal Language).

5. BASIC CONCEPT

5.1. Formal Definition of Activity Diagram

Activity Diagram Formal Definition [2] can be represented as:

 AD = (Node; Edge) (5)

Node is a set of nodes of which definition as follow:

 Node = {InitialNode; FlowFinalNode; ActivityFinalNode; ActionNode;

ActivityNode; ForkNode; JoinNode; DecisionNode; MergeNode;
RecieveSignalNode; SendSignalNode}

(6)

Edges defines the relationship between nodes such that:

 (7)

There are two types of edges: control flow and object flow. Control flow edges represent the
process of executing token passing in AD and object flow edges are used to show the flow of data
between the activities in AD.

54 Computer Science & Information Technology (CS & IT)

5.2. Test Case

From a global view, test case based on the SysML activity diagram consists of test path and test
data. And the definition is as followed:

For activity diagram, test scenario consists of a series of actions and edges in the diagram. Based
on the formal definition of the activity diagram given above, the test path is defined as follow:

In this formula, ai means node, ti means edge.In this case, a test path is a set of nodes, starting
from node a1 and ending with node an through the transition edges t2 … tn. For activity diagram, a1
and an represent the initial node and final node, respectively. Test data indicates the input
information corresponding to a particular test scenario including various types of data, even user
actions and so on.

5.3. Test Coverage Criteria

For software, the adequacy measurement of testing is reflected in the rate of coverage and
effectiveness of the test case. The test coverage criteria in white box tests includes statement
coverage, branch coverage, conditional coverage and so on. These coverage criteria ensure the
sufficiency of testing and provide implications for the test case generation algorithm. Here are
four test coverage criteria used in our design, for test case generation of SysML activity diagram
[19,25,26]:

• Action coverage criteria: In software testing process, testers are often required to
generate test cases to execute every action in the program at least once.

• Edge coverage criteria: In software testing process, testers are often required to generate
test cases to pass every edge in the program at least once.

• Path coverage criteria: These coverage criteria require that all the execution paths from

the programs entry to its exit are executed during testing.

• Branch coverage criteria: These coverage criteria generate test cases from each
reachable decision made true by some actions and false by others.

5.4. Hoare Logic

Hoare Logic is a formal system developed by C. A. R. Hoare [27, 28], and it is designed for the
proof of partial correctness of a program. In Hoare Logic, the Hoare Triple [29] is best known and
is also referenced in our method. The Hoare triple is of this form:

 {P} C {Q} (13)

, where P and Q are assertions and C is a command. P is named the pre-condition, which is a
predicate expression describing the initial states and Q the post-condition, which is also a
predicate expression describing the final states.

Computer Science & Information Technology (CS & IT) 55

Hoare also established necessary axioms to define the semantics of each program construct,
including axiom of assignment, rules of consequence, axioms of composition, axioms of
alternation, iteration and block. Axiom of assignment is used in our work, so we will briefly
introduce it:

 {Q(E\x)} x:=E {Q} (14)

,where x is a variable identifier, E is an expression of a programming language without side
effects, but possibly containing x, Q[E\x] is a predicate resulting from Q by substituting E for all
occurrences of x in Q. This axiom means that to verify the correctness of the assignment, the
postcondition Q should be satisfied. This equals to Q[E\x] is true because x is assigned by
representing E after the execution.

6. PROCEDURE OF TBFV-M

The TBFV-M method takes the specification describing the users’ requirements and the SysML
Activity Diagram model as input and verifies the correctness of the SysML model with respect to
the specification. The procedure of TBFV-M is illustrated in Figure2.

Figure 2. TBFV-M processing procedure

From this figure, we find that functional scenarios are derived from the specification written in
the pre- / post-condition style, while test paths are generated from the Activity Diagram and the
data constraints can be extracted from each test path. Then, the extracted data constraints are used
to match with functional scenarios. A matching algorithm is defined by us. We will verify the
successful matched the test path according to the requirements represented in specification. The
verification part can be separated into three parts: first, create a path triple, and then use the axiom
of Hoare Logic to derive pre-assertion for each test path. Finally, prove the implication of the pre-
condition in the specification and pre-assertion. If we can prove all the implication of pre-
assertion of all the test paths of the model and the matching pre-condition, then the model is to
meet the requirements.

56 Computer Science & Information Technology (CS & IT)

These critical steps in the TBFV-M method, including functional scenarios derivation, test path
generation, matching algorithm, pre-assertion derivation and implication will be discussed next
and comprehensive details will be described in the case study section.

6.1. Unified Formal Expression

Using a unified formal expression can reduce the ambiguity between communications, We
establish the unified formal expression, including specification guide and modeling guide.
Specification reflects complete requirements and we chose SOFL to describe formal specification.
An example specification written in SOFL is given below. It describes that if a person is smaller
than 6, he will be free; otherwise, he should buy the normal price for $10.

6.2. Functional Scenarios Derivation

The overall goal of functional scenario derivation is to extract all functional scenarios completely
in "Spre Gi Di" form (FSF), as mentioned above in TBFV section. Because this part is not our
main topic and has been researched before. In our work, we assume that an FSF of the
specification has been available somehow. The below segment of the process buy ticket,
mentioned previously, shows the FSF generated from the specification described in the last one.

6.3. Test Paths Generation

A test path auto-generation tool based on the SysML Activity Diagram model takes the model as
input and generates test cases as outputs automatically. Our SysML Activity Diagram test path
generation includes three parts. First, we use transformation algorithm to compress the input
Activity Diagram, which may contain unstructured module. The transformation is a cyclic
process, dealing with loop module, concurrent module and the problem of multiple starting nodes
separately. After compressing, we transform this unstructured activity diagram into an
intermediate representation form Intermediate Black box Model (IBM). IBM consists of one basic
module and a map from black box to the corresponding original actions. The third phase of our
approach is test path generation based on IBM. In this phase, two problems should be solved,
which are basic module test path generation and black box test path generation. Details of
automated test paths generation algorithm and implementation of unstructured SysML Activity
Diagram has been developed in our previous work [30].

Computer Science & Information Technology (CS & IT) 57

6.3.1. Loop Module

The Loop module in the SysML activity diagram can be considered as a node collection, and
these nodes in the collection can be cycled multiple times. As shown in Figure3, according to the
location of cyclic judgment condition located at the end of the loop module or the front, we can
divide the loop module into do-while loop and while-do loop.

Figure 3. Classification of loop modules

The first step in the transformation algorithm of the Loop module is to identify the loop module,
the second step is to compress it into a black box node loop, and finally reinsert it into the original
SysML activity diagram. Figure4 shows the process.

Figure 4. The transformation of loop module

Since the infinite traversal loop is not possible, it is possible to propose a different expansion
algorithm for different types of loops when processing the loop module. For simple loop, you can
take the following test case sets (where n is the maximum number of passes allowed):

58 Computer Science & Information Technology (CS & IT)

• skip the entire loop

• go through the loop once

• go through the loop twice

• go through the loop m times

• go through the loop n-1, n, n + 1 times

6.3.2. Concurrent Module

In the SysML activity diagram, the most common form of a concurrent module is a pair of fork
node and join node and all actions between these two nodes, as shown in Figure5 (a). The fork
node can be represented as simultaneous start of multiple parallel streams and the join node
represents the possible synchronization of multiple parallel streams, inflowing into next action.
The logical representation is AND. However, the synchronization stream can also be the logical
relationship OR, as shown in Figure5 (b).

Depending on how many concurrent streams can be synchronized by the join node, the parallel
modules can be divided into partJoin concurrent and noJoin concurrent, as shown in Figure5 (c)
and (d) below, respectively.

Figure 5. Classification of concurrent modules

On the test path generation algorithm for concurrent modules, the first step is to identify the
concurrency module, the second step is to compress it into a black box node FJ (Fork-Join), and
finally reinsert it into the original SysML activity diagram, as shown in the following Figure6.

For concurrent modules, we can use the Concurrent module path generation algorithm and
generate the test path automatically. For the compressed basic path, the test path generation
algorithm of the basic module can be applied. Once the basic path is generated, replace the FJ
black box with the test path generated from the concurrency module.

Computer Science & Information Technology (CS & IT) 59

Figure 6. The process of transformation of concurrent modules

6.3.3. Test path generation with IBM

The test case generation with IBM needs to deal with three types of modules, which are basic
modules, concurrent modules and loop modules. The basic module is the activity diagram that
compresses the concurrent module and the loop module into the black box node respectively. The
concurrent module and the Loop module are the transformed black box module which contain the
unique incoming edge and the unique outgoing edge.

For basic module, without considering the concurrent module and the loop module, we can
transform the SysML activity diagram model into a directed acyclic graph, using the idea of DFS
(Depth First Search) algorithm. While for unconstructed module, we can use corresponding
generation algorithm and generate the test path automatically. After the basic path is created, the
black box can be replaced with the test path generated by the unconstructed module.

6.3.4. Motivation Example

Figure7 is an unstructured SysML activity diagram model, which contains a concurrency
module and a loop module.

Figure 7. Motivating case

60 Computer Science & Information Technology (CS & IT)

Figure8 shows how to compress an unstructured activity diagram and transform the unstructured
module into a black box node. Eventually the unstructured activity diagram converts into an
intermediate representation of IBM. The first step is to identify the loop module and compress it
into a black box node while-do loop1, shown in Figure8(a). The compressed black box node is
the intermediate representation of the loop shown in the following Figure9(a). The second step is
to identify the noJoin concurrency module and compress it into a black box node No FJ1, shown
in Figure8(b). The compressed black box node is shown in the following Figure9(b).

Figure 8. The process of transformation

Figure8(b) is a compressed and structured SysML activity diagram that can be used to
automatically generate test cases. Finally, the black box module can be replaced.

Figure 9. The map of black boxes

6.4. Matching Algorithm

Matching the test path with functional scenario is very important for verification. In order to
verify the correctness of one path in Activity Diagram, we need to match it with corresponding
functional scenario. The constraints of test path can be extracted from edges of each path, which

are used to compare with Spre Gi part of functional scenario. If unmatched test paths or
functional scenarios appears, it means some errors may be existed in this model. And the model
needs to be modified. The matching algorithm is given below.

Matching algorithm takes the edge list and FS_list as input. Edge list is the collection of guard
conditions saved from test path and FS_list is extracted functional scenario form from
specification. First, the algorithm sets the label of the two lists unvisited. And for each in edge list

Computer Science & Information Technology (CS & IT) 61

do data integration. Data integration is like data intersection. For example, if we contain two
guard conditions x < 6 and x < 60, the integration of it is x < 6.

After completing the initialization step, find a matching functional scenario for each element in

edge list. The specific operation is: the edge after the integration compares with Spre Gi in the

functional scenario, if exactly the same, then we find the edge with the matched functional
scenario. If there is no exact matched functional scenario, then there is an inaccurate modeling
problem and needs to be refined. Therefore, immediately terminate the program, the problem of
the edge will also be returned. After traversing all the edge_list, we also need to check whether
each in FS_list has been visited. If there is an unvisited functional scenario, then it means that
there is a requirement that the model fails to be represented in the specification, and the model
needs to be refined.

6.5. Path Triple Establishment

Establish Path Triple and apply each node with the axiom in Hoare Logic. “(Spre Gi Di) (i =
2, … ,n)” denote one functional scenario and P = [node1; node2; … ;nodem] be a program path in
which each nodej(i = 2, … , n) is called a functional node, which is a DecisionNode, ActionNode,
or others. Assume each path P has its own target functional scenario, which is decided utilizing
matching algorithm. To verify the correctness of P with respect to the functional scenario, we
need to construct Path Triple: {Spre} P {Gi Di}.

The path triple is similar in structure to Hoare triple, but is specialized to a single path rather than
the whole program. It means that if the pre-condition Spre of the program is true before path P is
executed, the post-condition Gi Di of path P will be true on its termination. By applying the
axiom of assignment in Hoare Logic repeatedly, we can get pre-assertion, Ppre. Each node has
different processing approach, and the details are listed in the form below.

Table 1. Processing approach of AD node

Node Type Approach

ActionNode(assignment) The axiom for assignment

ActionNode(input/output) SKIP

Others node SKIP

62 Computer Science & Information Technology (CS & IT)

Finally, we can form the following expression:

 {Spre ∧ Gi} P {Di} (15)

 {Spre ∧ Gi} → Ppre (16)

, where Spre(~x/x), Ppre(~x/x) and Gi ∧Di(~x/x) are a predicate resulting from substituting every

decorated input variable ~x for the corresponding input variable x in the corresponding predicate,
respectively.

If we get a path [start -> action01: input c -> selection01 -> action02: price: =10 -> merge01 ->
end], which represents a path generating according to the above specification. Using the above
table, we can form path triple:

Then, we can apply for assignment to this path triple, like this:

, where {10=10} is pre-assertion.

6.6. Implication

Prove the implication. Finally, the correctness of one path whether it meets the corresponding

requirement is changed into the proof of the implication “Spre ∧ Gi → Spre”. If the implication can

be proved, it means that the path can model one part of the requirement; otherwise, it indicates the
existence of some error on the path.

Formally proving the implication “Spre ∧ Gi → Spre” may not be done automatically, even with the

help of a theorem prover such as PVS, depending on the complexity of Spre and Ppre. Our strategy
is as follows: if the complexity of data structure is not high, we will transform the problem into
solver, which can achieve full automation. Otherwise, if achieving a full automation is regarded
as the highest priority, as taken in our approach, the formal proof of this implication can be

Computer Science & Information Technology (CS & IT) 63

"replaced" by a test. That is, we first generate sample values for variables in Spre and Ppre, and then
evaluate both of them to see whether Ppre is false when Spre is true. If this is true, it tells that the
path under examination contains an error.

For example, if we need to judge the validity of the implication "(age > 0 AND normal: = 10)
(a < 12 AND normal * 0.5 =~ normal2 - ~normal)", use the test case (age, 6), (normal, 10) and we
can easily prove the implication is not correct.

7. SUPPORTING TOOL

We have developed a prototype software tool to support the TBFV-M method. Specifically, it
provides five major functions, which are functional scenario generation, test path generation,
matching function scenarios to test paths, pre-condition derivation, verification of test paths, and
output of verification result.

The tool interface is shown in Figure10. We can load specification and Activity Diagram. We
simply use .txt file to store specification and notice that the specification file should guarantee the
unified formal expression. We choose Enterprise Architect modeling tool to establish the system
model. The Enterprise Architect modeling tool is powerful and supports the SysML model that
will be created in Enterprise Architect and exported into XML format, so the Activity Diagram is
described in XML file.

Figure 10. Tool interface

The second step is deriving functional scenarios and generating test paths. And the tools interface
is shown in Fig.10. The below two windows are used to display the intermediate outcome. When
the user clicks on "match", the match result will refresh into the test paths window. And if it
exists unmatched part, a popup will remind user to refine the model.

8. CASE STUDY

Now we show a motivation example to detail the process of MBSE and TBFV-M method
described in the article above. First, we will get a requirement from the user, which consists of
inform the description: “In a banking system, a money-withdrawing function needs to be realized.
User input the required cash(c), if the cash is less than or equal to the balance(b), then the amount

64 Computer Science & Information Technology (CS & IT)

of money received(r), do not print information(p), the balance deducted the corresponding cash.
Otherwise, user will not get money and the screen will print "insufficient balance".” This
specification is formal and structured, as shown:

According to the specification, we can construct a set of SysML model and the Activity Diagram
is shown below.

Figure 11. Activity Diagram

We can find the expression is described with SOLF. After getting ready with all the input,
specification and Activity Diagram, we will start the TBFV-M method process. First, derive
Functional Scenarios from specification and generate test paths from Activity Diagram. The result
is shown as below.

Computer Science & Information Technology (CS & IT) 65

At the same time, we can extract data constraints from each test scenario, which is used for
matching with functional scenario. Then, the matching process is shown below. If it does not
exist a matched functional scenario, then it means that it exists a problem in the model, exactly in
this unmatched test path. This path is not established accurately according to the requirements
described in specification in the activity diagram model. If the match succeeds, it indicates that
the test path is designed for the matched test scenario.

We will do the verification of test scenario according to the successfully matched functional
scenario. First, we establish Path Triple and then apply the axiom of Hoare Logic to derive Ppre,
pre-assertion of one path for the corresponding test path. The blow figure chose the forth path and
matched the first functional scenario as an example and shows the substitution process, from
bottom to up. So, the top one “~c b AND c =~c AND b-r =~b-r" is the Ppre.

Finally, we turn this verification problem into proving whether the pre-condition of specification
can imply Ppre. If it can be proved, means that the path satisfies the requirement. If not, there is a
problem existing in the model, exactly in this unmatched test path. If the matched pre-condition
can imply the corresponding Ppre of all the test paths in the model, then the model is satisfied with
the user’s requirements.

From the above segment, we can see the implication (~c > 0 AND b 0 AND ~p = FALSE AND
~c ~b) (~c ~ b AND c =~c AND b - r =~b - r) is true. This it means that the test path is

66 Computer Science & Information Technology (CS & IT)

satisfied with the corresponding functional scenario. We have proved all the test paths, due to the
space limit, we omit further details.

9. CONCLUSION

We have presented an approach, known as TBFV-M (Testing-Based Formal Verification for
Model), for requirement design error detection in SysML Activity Diagrams by integrating test
cases generation and Hoare Logic. The principle underlying TBFV-M is first to derive functional
scenarios from specifications and generate test scenarios from Activity Diagrams. Then match
them and verify each test scenario according to the corresponding functional scenario. Hoare
logic is used during the verification process. TBFV-M method solve the limitation of TBFV, not
concerning about models and solved the problem of inconsistent, incomplete, and inaccurate
models. It has advantage in reducing the probability of system error and shortening the
developing time.

ACKNOWLEDGEMENTS

This work was supported by JSPS KAKENHI Grant Number 26240008, and Defence Industrial
Technology Development Program JCKY 2016212B004-2.

REFERENCES

[1] A. W. Wymore, Model-based systems engineering: an introduction to the mathematical theory of

discrete systems and to the tricotyledon theory of system design. CRC Press, 1993.

[2] S. Friedenthal, A. Moore, and R. Steiner, “A practical guide to sysml,” San Francisco Jung Institute

Library Journal, vol. 17, no. 1, pp. 41-46, 2012.

[3] T. Weilkiens,”Systems engineering with sysml/uml,” Computer, no. 6, p. 83, 2006.

[4] M. Shah, L. Chrpa, F. Jimoh, D. Kitchin, T. Mccluskey, S. Parkinson, and M. Vallati, “Knowledge

engineering tools in planning: State-of-the-art and future challenges,” Computer, 01 2013.

[5] T. S. Vaquero, J. R. Silva, and C. J. Beck, \A brief review of tools and methods for knowledge

engineering for planning scheduling," Computer, pp. 7-14, 2011.

[6] S. Liu, “Utilizing hoare logic to strengthen testing for error detection in programs,” Computer, vol. 50,

no. 6, pp. 1-5, 2014.

[7] S. Liu and S. Nakajima, Combining Specification-Based Testing, Correctness Proof, and Inspection

for Program Verification in Practice. Springer International Publishing, 2013.

[8] S. Liu, “A tool supported testing method for reducing cost and improving quality,” in IEEE

International Conference on Software Quality, Reliability and Security, 2016, pp. 448-455.

[9] S. Liu, Testing-Based Formal Verification for Theorems and Its Application in Software Specification

Verification. Springer International Publishing, 2016.

[10] S. Liu, A. J. Ofiutt, C. Hostuart, Y. Sun, and M. Ohba, “So: A formal engineering methodology for

industrial applications,” IEEE Transactions on Software Engineering, vol. 24, no. 1,pp. 24-45, 1998.

[11] F. Raimondi, C. Pecheur, and G. Brat, “Pdver, a tool to verify pddl planning domains,” Computer,

2009.

Computer Science & Information Technology (CS & IT) 67

[12] S. Marrone, F. Flammini, N. Mazzocca, R. Nardone, and V. Vittorini, “Towards model-driven v&v
assessment of railway control systems,” International Journal on Software Tools for Technology
Transfer, vol. 16, no. 6, pp. 669-683, 2014.

[13] F. Flammini, S. Marrone, N. Mazzocca, R. Nardone, and V. Vittorini, “Model-driven v&v processes

for computer-based control systems: A unifying perspective," Computer, vol. 7610, pp. 190-204,
2012.

[14] F. Liang, W. Schamai, O. Rogovchenko, S. Sadeghi, M. Nyberg, and P. Fritzson, “Model-based

requirement veri_cation : A case study,” in International Modelica Conference, Munich,Germany,
2012.

[15] R. Sasse and J. Meseguer, “Java+itp: A veri_cation tool based on hoare logic and algebraic semantics

1,” Electronic Notes in Theoretical Computer Science, vol. 176, no. 4, pp. 29-46, 2007.

[16] M. O. Myreen and M. J. C. Gordon, “Hoare logic for realistically modelled machine code.” In

TOOLS and Algorithms for the Construction and Analysis of Systems, International Conference,
Tacas 2007, Held As, 2007, pp. 568-582.

[17] J. Lasalle, F. Bouquet, B. Legeard, and F. Peureux, “Sysml to uml model transformation for test

generation purpose,” Acm Sigsoft Software Engineering Notes, vol. 36, no. 1, pp. 1-8, 2011.

[18] A. Nayak and D. Samanta, “Synthesis of test scenarios using uml activity diagrams,” Software &

Systems Modeling, vol. 10, no. 1, pp. 63-89, 2011.

[19] O. Oluwagbemi and H. Asmuni, “Automatic generation of test cases from activity diagrams for uml

based testing (ubt),” Computer, vol. 77, no. 13, 2015.

[20] S. Khurshid and D. Marinov, “Testera: Speci_cation-based testing of java programs using

sat, ”Automated Software Engineering, vol. 11, no. 4, pp. 403-434, 2004.

[21] S. Liu and S. Nakajima, “A decompositional approach to automatic test case generation based on

formal specifications,” in International Conference on Secure Software Integration Reliability
Improvement, 2010, pp. 147-155.

[22] S. Liu, T. Hayashi, K. Takahashi, K. Kimura, T. Nakayama, and S. Nakajima, “Automatic

transformation from formal specifications to functional scenario forms for automatic test case
generation," in New Trends in Software Methodologies, TOOLS and Techniques Proceedings of the
Somet 10, September 29 October 1, 2010, Yokohama City, Japan, 2010, pp. 383-397.

[23] Kent and Stuart, Model Driven Engineering. Springer Berlin Heidelberg, 2002.

[24] M. Broy, K. Havelund, R. Kumar, and B. Steffen, Towards a Unified View of Modelling and

Programming (Track Summary). Springer International Publishing, 2016.

[25] G. Gay, “Generating effective test suites by combining coverage criteria,” in International

Symposium on Search Based Software Engineering, 2017, pp. 65-82.

[26] A. K. Joseph, G. Radhamani, and V. Kallimani, \Improving test efficiency through multiple criteria

coverage-based test case prioritization using modified heuristic algorithm," in International
Conference on Computer and Information Sciences, 2016, pp. 430-435.

[27] C. A. R. Hoare, “An axiomatic basis for computer programming,” Communications of the Acm, vol.

12, no. 1, pp. 53-56, 1969.

[28] R. W. Floyd, Assigning Meanings to Programs. Springer Netherlands, 1993.

68 Computer Science & Information Technology (CS & IT)

[29] V. R. Pratt, “Semantical consideration on oyo-hoare logic," in Symposium on Foundations of
Computer Science, 1976, pp. 109-121.

[30] Y. Yin, Y. Xu, W. Miao, and Y. Chen, \An automated test case generation approach based on activity

diagrams of sysml," International Journal of Performability Engineering, vol. 13, no. 6, pp. 922-936,
2017.

AUTHORS

Yufei Yin
Master Student of East China Normal University
Exchange student in Hosei University

Prof. Dr. Shaoying Liu
High-Quality Software Engineering Lab
Department Faculty of Computer and Information Sciences
Hosei University

Prof. Dr. Yixiang Chen

Software and hardware co design technology and application, director of Engineering
Research Centre
East China Normal University

